
Evolutionary and Adaptive Learning in Complex Markets:
a brief summary

Cars H. Hommesa

aUniversity of Amsterdam, School of Economics, CeNDEF, Roetersstraat 11, NL-1018 WB,
Amsterdam, The Netherlands

ABSTRACT

We briefly review some work on expectations and learning in complex markets, using the familiar demand-
supply cobweb model. We discuss and combine two different approaches on learning. According to the adaptive
learning approach, agents behave as econometricians using time series observations to form expectations, and
update the parameters as more observations become available. This approach has become popular in macro.
The second approach has an evolutionary flavor and is sometimes referred to as reinforcement learning. Agents
employ different forecasting strategies and evaluate these strategies based upon a fitness measure, e.g. past
realized profits. In this framework, boundedly rational agents switch between different, but fixed behavioral
rules. This approach has become popular in finance. We combine evolutionary and adaptive learning to model
complex markets and discuss whether this theory can match empirical facts and forecasting behavior in laboratory
experiments with human subjects.
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1. INTRODUCTION

There are opposing views about expectation formation in economics and finance. According to the traditional,
neoclassical view, agents form rational expectations (RE) without systematic forecasting errors.30,32 In the
rational framework one usually assumes that agents have structural knowledge about the economy, and use all
available information to compute a rational forecast. Moreover, typically it is assumed that all agents are fully
rational, leading to the representative rational agent benchmark. In Ref. 17, Friedman gave an early argument
supporting the representative rational agent framework: irrational agents would be driven out of the market,
since rational agents earn higher profits or utility. Evolutionary selection thus prevents irrational behaviour and
the economy may be described as if all agents are perfectly rational.

Simon39 already criticized this view, arguing that deliberation and information gathering costs should be taken
into account. Recent work on bounded rationality in the 1990s, has challenged the traditional view, emphasizing
that the extreme assumptions concerning perfect knowledge of the economy and infinite computing capacities
are highly unrealistic11,36 and in sharp contrast with observed behavior in laboratory experiments with human
subjects.41 In macroeconomics, the adaptive learning approach has become popular.15 Agents do not know
the underlying “law of motion” of the economy, but instead use time series observations to form expectations
based upon their own “perceived law of motion”, trying to learn the model parameters over time. Much of this
literature has focussed on the stability of rational expectations equilibria (REE) and equilibrium selection, in an
attempt to justify rationality by adaptive learning.

Stimulated by work at the Santa Fe Institute, the view that markets are complex evolving systems has gained
popularity.1,2, 34 If the economy is a complex system with many interacting agents, it seems hard to justify
perfect structural knowledge about the economy and fully rational expectations, since knowledge about the
beliefs of all other agents would be required. A large population of boundedly rational heterogeneous agents,
using different forecasting rules ranging from simple to sophisticated, seems much more natural and in line with
human behavior. A problem of bounded rationality however is that there are many degrees of freedom, and which
model of bounded rationality is an accurate description of learning behaviour at the individual level?
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Here we briefly review some work on bounded rationality, expectation formation and learning in complex
markets; see Ref. 22 for a much more detailed discussion. We will use the familiar demand-supply cobweb model,
exactly the same framework employed in Ref. 32, in Muth’s seminal paper introducing rational expectations.
We emphasize two stories of bounded rationality: adaptive learning and evolutionary selection, and combine
both stories. An important point of departure for both stories is that agents do not understand the world
in its full complexity, but use relatively simple decision heuristics or forecasting strategies. According to the
adaptive learning story agents are identical, and can be represented by an “average agent”, who adapts his
behavior trying to learn an optimal rule within a class of simple rules. An example is the consistent expectations
equilibrium,28 where agents try to learn the best linear rule in an unknown nonlinear economy. The optimal
linear rule fits the observable sample mean and sample autocorrelation structure of the nonlinear economy. The
second story is concerned with heterogeneous, interacting agents and evolutionary selection of different forecasting
rules. Heterogeneous agent models are becoming increasingly popular in finance, where a distinction between
fundamentalists and chartist trading strategies can be made; see e.g. Refs. 21, 29 for extensive surveys. Here,
we consider the adaptive belief systems,5,6 where agents can choose between a costly sophisticated forecasting
strategy, such as rational expectations, and a freely available simple strategy, such as naive expectations. We
will integrate both stories and consider an economy with evolutionary selection between a costly sophisticated
adaptive learning rule and a cheap simple forecasting rule such as naive expectations.

Much theoretical work on expectations formation, learning and boundedly rational has been done, but sur-
prisingly few laboratory experiments with human subjects on expectations and learning have been conducted
done. A controlled laboratory environment is well suited to investigate how individuals form expectations and
learn from experience, and how the market aggregates individual forecasting strategies. Recently, in Ref. 26
experiments on expectation formation within a cobweb framework have been performed. We confront theoretical
work on expectation formation and learning with the observed “stylized facts” in these laboratory experiments.

Section 2 discusses cobweb dynamics under various expectations rules, such as naive, rational and adaptive
expectations. Section 3 focuses on laboratory experiments with human subjects on expectation formation. In
Section 4 we discuss adaptive learning, in particular the notion of consistent expectations equilibrium (CEE)
and sample autocorrelation (SAC-)learning. Section 5 focuses on heterogeneity and evolutionary competition
between different forecasting rules and ends with an example where adaptive learning and evolutionary selection
are combined. Finally, Section 6 briefly discusses a future perspective.

2. THE COBWEB MODEL

The classical cobweb model describes commodity price fluctuations of a non-storable good, such as corn or hogs,
that takes one time period to produce. It is one of the simplest benchmark models in economic dynamics.
Producers form price expectations one period ahead and derive their optimal production decision from expected
profit maximization. Given producers’ price forecast pe

t , optimal supply is given by

S(pe
t ) = argmaxqt

{pe
t qt − c(qt)} = (c′)−1(pe

t ). (1)

The cost function c(·) is assumed to be strictly convex, so that supply is strictly increasing in expected price.
The simplest case arises when the cost function is quadratic, c(q) = q2/(2s), yielding a linear supply curve

S(pe) = spe, s > 0. (2)

In general a strictly convex cost curve leads to a nonlinear, increasing, supply curve. As an example, we will
consider an increasing, S-shaped supply curve

S(pe) = b + arctan(λpe), λ > 0, b > π/2, (3)

where the parameter λ tunes the nonlinearity of the supply curve and b > π/2 is a parameter tuning the
production level ensuring that production is always non-negative.

Consumer demand D depends upon the current market price pt. We will simply work with a linearly
decreasing demand curve

D(pt) = a − dpt + εt, a, d > 0, (4)
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where −d is the slope of the demand curve, a determines the demand level and εt is an IID stochastic series
representing exogenous random demand shocks. If beliefs are homogeneous, i.e., all producers have identical
price expectations pe

t , market clearing implies

D(pt) = S(pe
t ) (5)

yielding the realized market price

pt = D−1(S(pe
t )) =

a + εt − S(pe
t )

d
. (6)

With an increasing supply curve and a decreasing demand curve, there can only be one price, denoted by p = p∗,
where demand and supply intersect. The price dynamics in (6) thus depends upon the demand and supply
curves, as well as on the assumed expectations hypothesis. How do producers form price expectations? We first
consider the benchmarks of naive, rational and adaptive expectations.

2.1 Naive expectations

Before the rational expectations revolution it was common practice to use simple forecasting rules, such as naive
expectations, where prediction equals the last observed price, pe

t = pt−1. Under naive expectations, the price
dynamics (6) becomes

pt = D−1(S(pt−1)). (7)

According to the well known cobweb theorem,16 there are essentially two possibilities for the price dynamics
under naive expectations: (i) if −1 < S′(p∗)/D′(p∗) < 0, then the steady state p∗ is (locally) stable, and prices
converge; if S′(p∗)/D′(p∗) < −1 the steady state p∗ is (locally) unstable, and prices diverge. In the case of a
nonlinear, bounded supply curve as in (3), if the steady state is unstable, prices will converge to a stable 2−cycle,
with regular up and down oscillations, as illustrated in Figure 2 in the next Section.

2.2 Rational expectations

Simple forecasting rules such as naive expectations, lead to systematic forecasting errors. This argument seems
particularly strong when the model generates a 2-cycle. When producers expect a high (low) price, they will
supply a high (low) quantity and consequently the realized market price will be low (high). Along a ‘hog
cycle’ of up and down price oscillations, expectations are thus systematically wrong, and forecasting errors are
strongly correlated. Rational agents would learn from their systematic errors and revise expectations accordingly.
These considerations lead Muth in Ref.32 to introduce rational expectations, where producers’ subjective price
expectations equal the objective conditional mathematical expectation of the market price, i.e. pe

t = Et[pt]. The
rational expectations forecast is given by

pe
t = Et[pt] = p∗, (8)

where p∗ is the unique price corresponding to the intersection point of demand and supply. Given producers’
rational price forecast pe

t = p∗, the actual law of motion (6) becomes

pt = p∗ +
εt

d
. (9)

The cobweb model therefore has a unique REE, given by an IID process with mean p∗. Along a REE expectations
are self fulfilling and producers make no systematic forecasting errors, since forecasting errors are uncorrelated.
In order to form rational expectations however, perfect knowledge of underlying market equilibrium equations is
required and, in particular, agents must be able to compute the intersection point p∗.

2.3 Adaptive expectations

Adaptive expectations is given by

pe
t = (1 − w)pe

t−1 + wpt−1, 0 ≤ w ≤ 1, (10)

where w is the expectations weight factor. The expected price is a weighted average of yesterday’s expected and
realized prices, or equivalently, the expected price is adapted by a factor w in the direction of the most recent
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Figure 1. Bifurcation diagram with respect to the expectations weight factor w, 0.1 ≤ w ≤ 0.7, with the other parameters
fixed at a = 0.7, d = 0.25 and λ = 4.8 (x is the deviation from the inflection point of the nonlinear, S-shaped supply
curve (3)). For large values of w prices converge to a regular 2-cycle with large amplitude. As w decreases the amplitude
of price fluctuations decreases and a bifurcation route to chaos occurs. When w becomes very small, chaotic fluctuations
are stabilized and prices converge to REE.

realization. Adaptive expectations may thus be seen as ‘error learning’ with a constant factor. Notice that for
w = 1, adaptive expectations reduces to naive expectations. Under adaptive expectations and, given the linear
demand curve (4), the dynamics of expected prices in the cobweb model becomes

pe
t = (1 − w)pe

t−1 + w(
a + εt − S(pe

t−1)
d

). (11)

Without any random shocks εt, for nonlinear, but monotonic, demand and/or supply curves, this nonlinear
deterministic difference equation can easily generate chaotic price fluctuations.9,20 Figure 1 shows a bifurcation
diagram with respect to the expectations weight factor w, with the nonlinear, S-shaped supply curve (3). For
high values of w, sufficiently close to w = 1 (i.e. close to naive expectations) prices converge to a stable 2-cycle,
whereas for small values of w, sufficiently close to w = 0, prices converge to the RE steady state. For intermediate
w−values however, chaotic price oscillations arise.

When prices fluctuate chaotically, the corresponding forecasting errors will be highly unpredictable and
the question arises whether boundedly rational agents would be able to detect any structure in these chaotic
forecasting errors and improve upon their simple adaptive forecasts. If patterns are indeed hard to discover,
then adaptive expectations with chaotic price fluctuations might be a satisfactory (long run) boundedly rational
equilibrium.

3. LABORATORY EXPERIMENTS

There is a lot of theoretical work on expectations formation and learning when agents are boundedly rational,
but surprisingly few laboratory experiments with human subjects have been performed to study how individuals
form expectations and learn from experience, and how the market aggregates individual forecasts.

Early experiments have been done in Ref. 37, using historical data on wheat prices and asking subjects to
predict the mean wheat price for the next 5 periods. Ref. 33 studies price predictions in repeated double auction
experimental asset markets, as in the famous bubble experiments of Ref. 40, and shows that forecasts tend to be
biased and inconsistent with RE, but there is a tendency of forecasts to evolve in the direction of RE. In Refs.
31 expectation formation in laboratory experiments in inflationary overlapping generations economies is studied.

Here we discuss some recent laboratory experiments of Ref. 26 on individual expectations and learning in
the cobweb framework. See also Ref. 25 for similar experiments in an asset pricing framework. The participants
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in the experiments were asked to predict next period’s price of a certain, unspecified, good. The realized price
pt in the experiment was determined by the (unknown) cobweb market equilibrium equation

D(pt) =
1
K

K∑

i=1

S(pe
i,t), (12)

where D(pt) is the demand for the good at price pt, K is the size of the group, pe
i,t is the price forecast by

participant i and S(pe
i,t) is the supply of producer i depending upon the forecast by participant i. Demand and

supply curves D and S were fixed during all experiments (except for small random shocks to the demand curve)
and unknown to the participants. We focus on the group experiments with K = 6, but one-person experiments
(i.e. K = 1) have also been performed27 and used to estimate various learning models.10 Solving (12), with
linear demand (4), the market equilibrium price is

pt =
a − 1

K

∑K
i=1 S(pe

i,t)
d

+ εt, (13)

where εt are IID demand shocks, which are drawn from a normal distribution N(0, 0.5). In the experiments
the parameters were fixed at a = 2.3, d = 0.25 and K = 6, and we used the nonlinear, S-shaped supply curve
(geometrically similar to the S-shaped supply curve (3)):

S(pe
i,t) = Tanh(λ(pe

i,t − 6)) + 1, (14)

Expectation formation of the producers is the only part of the model that is affected by the participants in
the experiments. Participants did not know underlying market equilibrium equations, nor were they informed
about the distribution of any exogenous shocks to demand and/or supply. The participants were told that they
were advisors to producers of an unspecified good and that the price was determined by market clearing. Based
upon this information the participants were asked to predict next period’s price. The predicted price had to be
between 0 and 10 and the realized price was also always between 0 and 10. Participants’ earnings in each period
were a quadratic function of their squared forecasting error. The better their forecast, the higher their earnings.
After every period the participants were informed about the realized price in the experiment. Also a time series
of the participant’s own prediction and a time series of the realized price in the experiment was shown on their
computer screen.

Participants in the experiments therefore had little information about the price generating process and had to
rely mainly upon time series observations of past prices and predictions. The information in the experiment was
thus similar to the information assumption underlying much of the bounded rationality literature, where agents
form expectations based upon time series observations. Our setup enables us to test the expectations hypothesis in
a controlled dynamic environment. The main question was whether agents can learn and coordinate on the unique
REE, in a (relatively simple) world where underlying market equilibrium equations are unknown and agents only
observe time series. Our choice for a nonlinear, S-shaped supply curve enables us to investigate whether agents
can avoid systematic forecasting errors, as would e.g. occur along a 2-cycle under naive expectations, or can
even learn a REE steady state.

In Ref. 26 a stable and an unstable treatment were considered, differing only in the parameter λ tuning
the nonlinearity of the supply curve (14). In the stable treatment, if all subjects use naive expectations, prices
converge to the RE steady state. In contrast, in the unstable treatment, if all subjects use naive expectations,
prices diverge from the RE steady state and converge to the stable 2-cycle, with systematic forecasting errors,
as illustrated in Figure 2 (top left panel). Figure 2 also illustrates what would happen in the unstable treatment
of the experiment if all subjects would use one of the other well known benchmark expectations rules, namely
adaptive expectations (w = 0.2), rational expectations (i.e. use the RE price p∗ as forecast), learning by average,
that is, use the sample average

p̄e
t = (

t−1∑

j=0

pj)/t, (15)
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Figure 2. Price fluctuations in the cobweb model under naive expectations (top left), adaptive expectations (top right),
rational expectations (middle left), average price forecast (middle right) and SAC-learning (bottom).

Figure 3. Realized market prices in two different cobweb group experiments. In the stable treatment (left panel; λ = 0.22)
the price quickly converges to the RE price, whereas in the unstable treatment (right panel; λ = 2)) prices do not converge
and exhibit excess volatility, with strongly fluctuating prices around the RE price.

and sample autocorrelation (SAC) learning (i.e. updating sample average and first order sample autocorrelation
coefficient, as discussed in detail in Section 4).

Figure 3 shows time series of the realized prices in two typical group experiments, one stable and one unstable
treatment. Hommes et al. (2007) summarize the stylized facts of realized market prices in the cobweb experiments
as follows:
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1. the sample mean of realized market prices is very close to the RE price;

2. the sample variance of realized market prices depends on the treatment

(a) in the stable treatment the sample variance is very close to the RE benchmark;
(b) in the unstable treatment the sample variance is significantly higher than the RE benchmark;

3. there is no linear autocorrelation left in realized market prices.

One may say that the stable treatment converges to RE∗, whereas the unstable treatment exhibits excess volatil-
ity, with prices fluctuating irregularly (no autocorrelations) and with high amplitude around the RE benchmark.

It is useful to compare these experimental results to the theoretical benchmarks illustrated in Figure 2. These
are representative agent benchmarks, where all agents use the same forecasting rule, and demand and supply
are exactly the same as in the unstable treatment in the experiment. Naive expectations is clearly very different
from the experiments, since it leads to high amplitude price fluctuation with regular, predictable up and down
(noisy) period 2 oscillations. Adaptive expectations is also inconsistent with the experiments. Although the
amplitude is smaller, the price fluctuations are too regular, with frequent up and down oscillations. In contrast
to the experiments, the price series under adaptive expectations, for example, exhibits strong negative first order
autocorrelation. The time series under rational expectations is very similar to the time series in the stable
treatment (the exogenous shocks in the experiments are the same as for the RE benchmark simulation), but very
different from the unstable treatment, which has a much larger amplitude. RE is therefore a good description in
the stable treatment, but not in the unstable treatment. Finally, learning by average or by sample autocorrelation
always leads to (quick) convergence to RE, which is inconsistent with the observed excess volatility in the unstable
treatment of the experiments. None of these representative agent learning models thus can explain the cobweb
experiments, suggesting that heterogeneous expectations play a key role in expectation formation of boundedly
rational agents. Before turning to heterogeneous expectations models in Section 5, we discuss adaptive learning
by an “average agent” in Section 4.

4. ADAPTIVE LEARNING

Adaptive learning refers to the situation where agents use some parameterized rule, and update the parameters
over time as additional observations become available. Agents thus try to learn the parameters of their rule,
for example behaving as a time series econometrician using a recursive ordinary least squares (OLS) updating
rule. Ref. 15 contains an extensive and excellent overview of adaptive learning in macroeconomics. Within the
cobweb framework adaptive learning has been applied by Bray and Savin (1986).

Adaptive learning may provide a learning story how agents may learn a REE, without structural knowledge
of market equilibrium equations. In fact, we have seen an example already, since the average price forecast
rule (15) can be obtained from OLS regression of prices on a constant. The average price forecast rule enforces
convergence to the unique REE in the cobweb model. In cases when there are multiple REE, adaptive learning
may be used as an equilibrium selection device, providing a justification of RE equilibria that are stable under
learning.

However, adaptive learning need not always converge to REE. In particular, when the perceived law of motion
(i.e. the law of motion agents believe in) is misspecified (i.e. different from the true law of motion), the learning
process need not converge to a REE steady state, but may lead to some boundedly rational learning equilibrium,
leading to expectations driven periodic or even chaotic fluctuations.7,38

This section discusses a simple adaptive learning scheme, sample autocorrelation (SAC-)learning.28 Agents
are trying to learn the best linear rule (according to forecasting performance) in an unknown, nonlinear economy.
In a consistent expectations equilibrium the linear rule has the same autocorrelation structure as the unknown
nonlinear system.

∗For different market settings, these results may off course change. The cobweb model has negative expectations
feedback. Heemeijer et al. (2007) show in fact that the results are quite different in markets with positive feedback, such
as demand driven speculative asset markets. Positive feedback may lead to persistent deviations from the fundamental
benchmark, with the sample mean of realized prices e.g. much higher than the RE fundamental benchmark.
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4.1 Consistent Expectations Equilibrium (CEE)

There are simple chaotic processes whose behavior looks random to an observer, and e.g. exhibits no autocor-
relations. More generally, the well known asymmetric tent maps (a class of piecewise linear interval map) can
generate exactly the same autocorrelation structure as a stochastic AR(1) process.8,35 Boundedly rational agents
observing time series generated by such an unknown nonlinear process and using linear statistical techniques,
might wrongly believe that the time series is generated by a stochastic AR(1) process. This example motivated
the concept of consistent expectations equilibrium,28 building on the concept of a self-fulfilling mistake.18

If agents believe that prices are generated by a stochastic AR(1), the predictor for pt minimizing the mean
squared prediction error is

pe
t = α + β(pt−1 − α), (16)

where the parameters α and β, β ∈ [−1, 1], represent the long run average and the first order autocorrelation
coefficient. Given the linear predictor (16), the implied actual law of motion for the cobweb model becomes

pt = Fα,β(pt−1) := D−1S(α + β(pt−1 − α)). (17)

The sample average of a time series (pt)∞t=0 is defined as

p̄ = lim
T→∞

1
T + 1

T∑

t=0

pt (18)

and the sample autocorrelation coefficients are given by

ρj = lim
T→∞

cj,T

c0,T
, j ≥ 1, where cj,T =

1
T + 1

T−j∑

t=0

(pt − p̄)(pt+j − p̄), j ≥ 0. (19)

A CEE is now defined as

Definition 4.1. A triple {(pt)∞t=0;α, β}, where (pt)∞t=0 is a sequence of prices and α and β are real numbers,
β ∈ [−1, 1], is called a consistent expectations equilibrium (CEE) if

1. the sequence (pt)∞t=0 satisfies the implied actual law of motion (17),

2. the sample average p̄ in (18) exists and is equal to α, and

3. the sample autocorrelation coefficients ρj , j ≥ 1, in (19) exist and the following is true:
a. if (pt)∞t=0 is a convergent sequence, then sgn(ρj) = sgn(βj), j ≥ 1;
b. if (pt)∞t=0 is not convergent, then ρj = βj , j ≥ 1.

Stated differently, a CEE is a price sequence together with an AR(1) belief such that expectations are self-
fulfilling in terms of the observable sample average and sample autocorrelations. Along a CEE expectations are
thus correct in a linear statistical sense.

4.2 Sample Autocorrelation Learning

Now consider the more flexible situation of adaptive learning with agents updating their AR(1) belief parameters
αt and βt over time, as additional observations become available. A natural learning scheme fitting the frame-
work of CEE is based upon sample average and sample autocorrelation coefficients. For any finite set of past
observations {p0, p1, . . . , pt} the sample average is

αt =
1

t + 1

t∑

i=0

pi , t ≥ 1 (20)
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and the first order sample autocorrelation coefficient is

βt =
∑t−1

i=0(pi − αt)(pi+1 − αt)∑t
i=0(pi − αt)2

, t ≥ 1. (21)

When the belief parameters are updated according to (20) and (21) the (temporary) law of motion (17) becomes

pt+1 = Fαt,βt
(pt) = D−1S(αt + βt(pt − αt)) , t ≥ 0. (22)

The dynamical system (20)-(22) is called the actual dynamics with sample autocorrelation learning (SAC-
learning).

Which type of CEE exist in the cobweb model, and to which of them will the SAC-learning dynamics converge?
In Ref. 28 it is shown that in the most relevant case, when demand is decreasing and supply is increasing, the only
CEE is the RE steady state price p∗. This means that, even when underlying market equilibrium equations are
not known, agents should be able to learn and coordinate on the REE price simply by looking at sample averages
and sample autocorrelations. Although other simple forecasting rules, such as adaptive expectations, might lead
to chaotic price fluctuations, these forecasting rules are inconsistent in terms of sample autocorrelations. Hence,
in a nonlinear cobweb economy with monotonic demand and supply, boundedly rational agents should, at least
in theory, be able to learn the unique REE from time series observations.

In general however, given an AR(1) belief, there are at least three possible types of CEE:

• a steady state CEE in which the price sequence (pt)∞t=0 converges to a steady state p∗, with α = p∗ and
β = 0;

• a 2-cycle CEE in which the price sequence (pt)∞t=0 converges to a period two cycle {p∗1, p∗2}, p∗1 �= p∗2, with
α = (p∗1 + p∗2)/2 and β = −1;

• a chaotic CEE in which the price sequence (pt)∞t=0 is chaotic, with sample average α and autocorrelations
βj .

Which of these cases occurs in the cobweb model depends on the composite mapping D−1S in (17), deter-
mined by demand and supply curves. The chaotic case can only arise when demand and/or supply curves are
non-monotonic; see Ref. 24 for an example. With monotonic demand and supply curve as in the laboratory
experiments SAC-learning will always enforce convergence to the REE price.

5. HETEROGENEOUS BELIEFS AND EVOLUTIONARY SELECTION

So far we have focused on a representative agent cobweb model, where all producers have identical expectations.
But why would all agents have the same expectations? Laboratory experiments have shown that, even when
individuals face the same information, they may disagree and take different decisions. In a complex market
it seems more appropriate to model agents as boundedly rational and heterogeneous, using different types of
forecasting rules. But this raises an immediate problem: which rules will boundedly rational agents choose from
an ocean of infinitely many possible rules?

Models with heterogeneous agents are becoming increasingly popular. In particular, in finance models with
fundamentalists and chartists have received much attention; see e.g Refs. 21, 29 for extensive recent reviews
of this rapidly expanding literature. In this section we discuss a model with heterogeneous expectations, as
proposed by Brock and Hommes in Ref. 5 (henceforth BH) based on three underlying assumptions: (i) agents
choose from a class of rules varying from very simple to very sophisticated; (ii) more sophisticated rules require
more effort and are therefore more costly than simple rules, and (iii) agents tend to switch to rules that have
performed better in the recent past. Evolutionary selection thus disciplines the forecasting rules to be used.
In the cobweb framework, producers can choose between different forecasting rules Hj . The fractions nj,t of
producers using predictor Hj at date t, will be updated over time based upon a publically available evolutionary
fitness measure, given by realized net profits, associated to each predictor.
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BH focus on a simple two type case with rational expectations, which can be obtained at costs C ≥ 0 per time
period, versus naive expectations, which is freely available. This case may be viewed as an extreme case, with
rational expectations representing the most sophisticated forecasting rule, and naive expectations representing
the simplest forecasting rule. BH show the occurrence of a rational route to randomness, i.e. a bifurcation route
to strange attractors and chaos as traders become more rational in the sense that they become more sensitive to
differences in past performance and switch more quickly to a better predictor.

Rational agents have perfect knowledge about market equilibrium equations and are aware of the fact that the
market equilibrium price is affected by the presence of naive traders. Hence, in a heterogeneous world rational
agents have perfect knowledge about prices and quantities, but also about beliefs of all other traders. Although
this case is theoretically appealing, it seems highly unrealistic in real markets that some agents have (perfect)
information about beliefs of other agents. Therefore we will focus here on some perhaps more realistic cases,
where agents only use information extracted from observable quantities, such as prices. As a starting point of
the discussion, we consider the case of two simple linear predictors.

5.1 Linear forecasting rules

Consider the two linear AR(1) prediction rules

Hj(pt−1) = αj + βjpt−1, j = 1, 2, (23)

with fixed parameters αj and βj . The supply curve is linear as in (2), with corresponding cost function c(q) =
q2/(2s). The market clearing price in the cobweb model with linear demand and supply and two trader types,
with linear predictors as in (23), is determined by†

a − dpt = n1ts(α1 + β1pt−1) + n2ts(α2 + β2pt−1), (24)

where n1t and n2t denote the fractions of agents using respectively H1 and H2, at the beginning of period t.
These fractions will be updated according to an evolutionary fitness measure based on past realized profits.
Realized net profit in period t for traders using predictor Hj is given by

πj,t = sptHj(pt−1) − s

2
(Hj(pt−1))2 − Cj , (25)

where Cj represents the average costs per time period for obtaining predictor Hj . For a simple habitual rule
of thumb predictor, such as naive or adaptive expectations, these costs Cj will be zero, whereas for more
sophisticated predictors such as fundamentalists beliefs based on fundamental analysis, information gathering
costs Cj may be positive. The fitness measure underlying evolutionary selection is given by

Ujt = wUj,t−1 + (1 − w)πj,t, (26)

where 0 ≤ w ≤ 1 is a memory parameter. A smaller w puts more memory on recent observations and in the case
w = 0 fitness is given by most recent observed realized net profits.

BH considered this model with synchronous updating of strategies, that is, in each period all agents update
their strategies. Here we consider the more general case of asynchronous updating.13,23 Per time unit only
a fraction 1 − δ of agents, distributed randomly among agents of both types and independently across time,
is assumed to reconsider their strategy on the basis of the most recent information available. The remaining
fraction δ sticks to their current strategy. The corresponding dynamics of the fractions is given by a modified
version of the discrete choice, logit probabilities:

njt = (1 − δ)eγUj,t−1/Zt−1 + δnj,t−1, (27)

where Zt−1 =
∑

h eγUh,t−1 is a normalization factor so that fractions add up to 1. For δ = 0, we are back in the
case of synchronous updating. A key feature of this evolutionary predictor selection is that agents are boundedly

†In our simulations we will work in deviations xt = pt − p∗ from the fundamental RE steady state price p∗. This is
equivalent to setting the parameter a = 0, so that the RE steady state p∗ = a/(d + s) = 0.
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rational, in the sense that predictors with higher evolutionary fitness attract more followers. The parameter γ
is called the intensity of choice, measuring how fast producers switch between different prediction strategies.
For γ = 0 the fractions always converge to equal shares 1/H, whereas for the other extreme γ = ∞, in each
period all producers who update in that period (i.e., a fraction 1 − δ) switch to the optimal predictor. Hence,
the higher the intensity of choice, the more rational agents are in the sense that they switch more quickly to the
best strategy in terms of past performance. According to (24) and (27) market equilibrium prices and fractions
of different trading strategies co-evolve over time.

5.2 Fundamentalists versus naive expectations

The linear predictors (23) specialize to the case with fundamentalists versus naive expectations when α1 = p∗ =
a/(d + s) (the steady state price), β1 = 0, α2 = 0 and β2 = 1:

H1(pt−1) = p∗ =
a

d + s
(28)

H2(pt−1) = pt−1. (29)

Figure 4 shows attractors for different values of the intensity of choice γ and some corresponding time series. A
rational route to randomness, i.e. a bifurcation route from simple to complicated, chaotic dynamics and strange
attractors occurs as the intensity of choice increases. The market switches between periods of low volatility,
with prices close to the fundamental price, and high volatility, with irregularly switching prices. Prices diverge
slowly from the fundamental steady state price, as long as most agents use the simple, freely available naive
forecast. When forecasting errors increase, it becomes worthwhile to buy the sophisticated fundamental forecast,
and more agents start switching to the fundamental forecast, thus stabilizing price fluctuations, etc. Due to
the asynchronous updating of strategies, agents switch more gradually between strategies, and the time series of
fractions of fundamentalists shows much more persistence than in the case with synchronous updating. Figure 4
(bottom panel) also illustrates the sample average and first order sample autocorrelation (SAC) of the price
series. Sample average quickly settles down to a value close to 0‡, whereas the first order SAC is clearly negative,
converging to approx. −0.85.

5.3 Adaptive learning versus naive expectations

In the case of fundamentalists versus naive, price series exhibit strong first order negative autocorrelations,
even when the dynamics is chaotic. This has been illustrated in Figure 4 showing that, for γ = 3, the sample
autocorrelations of prices converges to a negative value around −0.85. An agent who behaves as a time series
econometrician would easily detect this strong negative autocorrelation and adapt her forecasts. Even without
the use of any statistical software, a smart agent might detect negative autocorrelation, simply by observing
that positive (negative) deviations from the average price are always followed by negative (positive) deviations.
What would happen if agents recognize this structure from observing realized market prices?

The next example combines evolutionary strategy selection and adaptive learning. Consider a group of agents
using SAC-learning, to exploit the negative first order autocorrelation in observed prices. That is, replace the
fundamental forecast by a SAC-learning forecasting rule

H1(pt−1) = αt−1 + βt−1(pt−1 − αt−1), (30)

where αt and βt are determined through SAC-learning as in (20) and (21) respectively. This approach widens
the range of forecasting rules to all linear AR(1) rules. The sophisticated agent type tries to learn the optimal
linear rule through adaptive learning, within a heterogeneous agent environment. Recently, in different contexts
similar heterogeneous agent models with adaptive learning have been introduced.3,12,14

Figure 5 illustrates the dynamics in the case of SAC-learning versus naive expectations. Agents learn to be
contrarians, as βt → −0.62, consistent with the SAC in realized prices. In this example there is still fairly strong

‡Recall that the simulations are in deviations xt = pt − p∗ from the fundamental, so that the sample average of prices
converges to fundamental value.
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Figure 4. Fundamentalists versus naive. Strange attractors and time series for different γ-values, with other parameters
fixed at a = 0, d = 0.5, s = 1.35, δ = 0.5, α1 = 0, β1 = 0, C1 = 1, α2 = 0, β2 = 1 and C2 = 0. Although price dynamics
is chaotic, there is still clear linear autocorrelation structure. Sample average of prices converges (close ) to fundamental
value, while sample autocorrelations converge (close) to −0.85, indicating significantly negative first order autocorrelation.
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Figure 5. SAC-learning versus naive. Agents learn to be contrarians, as the first order autocorrelation coefficient converges,
βt → −0.62. Parameters: γ = 3, a = 0, d = 0.5, s = 1.35, δ = 0.5, w = 0, C1 = 1, α2 = 0, β2 = 1 and C2 = 0.
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Figure 6. SAC-learning versus naive expectations with memory in the fitness measure. Attractor (a) and time series
of prices pt (deviations from fundamental), fraction n1t of SAC-learners, sample average αt and sample autocorrelation
coefficient βt. With more memory in the fitness meausure, the remaining autocorrelation in prices is weaker (βt → −0.48).
Parameters: γ = 3, a = 0, d = 0.5, b = 1.35, δ = 0.5, w = 0.9, C1 = 1, α2 = 0, β2 = 1 and C2 = 0.

negative first order autocorrelation in prices, although it is less than in the case of fundamentalists versus naive,
and it is consistent with the behavior of the sophisticated type, who have learned the first order autocorrelation
coefficient consistent with realized market prices. Figure 6 illustrates another example with memory in the fitness
measure, where the (first order) autocorrelation in prices becomes even weaker (βt → −0.48).

6. CONCLUDING REMARKS

We have summarized bounded rationality and learning in the familiar cobweb, hog-cycle framework. Two stories
of bounded rationality have been emphasized. The story of adaptive learning assumes a representative “average”
agent trying to optimize a simple, (linear) misspecified rule in an unknown complex (nonlinear) economy. The
other story assumes heterogeneous forecasting strategies and endogenous, evolutionary selection based upon past
performance. We have also presented an example where both stories are integrated, with evolutionary selection
between an adaptive learning rule and a simple, fixed rule.

In a cobweb economy with nonlinear, but monotonic demand and supply curves, many adaptive learning
processes enforce convergence to the unique REE steady state price. For example, the steady state price forecast
is the only (linear) forecast, where sample averages and sample autocorrelations of realized market prices are
consistent with beliefs. Simply by looking at sample averages and sample autocorrelations, in particular trying
to learn the negative first order autocorrelation so typical for the ‘hog cycle’, boundedly rational agents should
be able to learn the unique REE.

Laboratory experiments with human subjects show however that this is not as easy as theory suggests. Only in
the stable treatment of the experiment (i.e. when the market is stable under naive expectations) do market prices
converge to REE. In the unstable treatment of the experiments, realized market prices are characterized by three
stylized facts: (i) the sample mean is close to the RE price; (ii) there is excess volatility, i.e., the sample variance
is much higher than the RE variance, and (iii) there is no linear predictability (no autocorrelations) in realized
prices. The observed excess volatility is inconsistent with convergence of adaptive learning of a representative
agent. For other simple expectations rules, such as adaptive expectations, irregular price fluctuations around
the RE benchmark arise, but these fluctuations, even when chaotic, typically still exhibit negative first order
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autocorrelations, inconsistent with stylized fact (iii) in the experiments. Some form of heterogeneity is therefore
needed to explain the laboratory experiments.

We have also reviewed some results on heterogeneous agent models with endogenous, evolutionary strategy
selection, including several two-type cases with a costly sophisticated forecasting rule (fundamentalists or SAC-
learning) versus a free, simple forecasting rule (naive expectations). These two type models will converge to the
RE price in the stable treatment of the experiment, and at the same time may generate instability and excess
volatility in the unstable treatment, when agents switch fast enough between strategies, similar to the stylized
facts in the experiments. However, it is not clear whether a two type model can simultaneously explain stylized
fact (iii), i.e. linear unpredictability. A two type model with fundamentalists versus naive expectations generates
strongly negative first order autocorrelation in prices, even when the system is chaotic. The typical up and down
‘hog cycle’ oscillations are still present, and would be observable to a careful agent. When fundamentalists are
replaced by SAC-learning, who try to learn and exploit the negative first order autocorrelation in prices, the
first order autocorrelation gets weaker, but does not disappear completely. In the cobweb framework, adaptive
agents learn to become contrarians and “arbitrage away” part of the linear predictability, but do not completely
wash out the autocorrelations in market prices. These results suggest that, in order to match all stylized facts
of the experiments, either the simple strategy (naive expectations) in these 2-type models needs to be replaced
by a somewhat more complicated strategy (perhaps adaptive expectations or a 2-period average forecast), or
more heterogeneity, i.e. more types of forecasting rules, are needed to fully explain the laboratory experiments.
Matching the stylized facts of laboratory experiments on expectations formation remains an important challenge
for theories of bounded rationality and learning, in the simple cobweb framework as well as for other, more
realistic expectations feedback settings.
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