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ABSTRACT 

A set of low-cost, compact multispectral imaging systems have been developed for deployment on tethered balloons for 
education and outreach based on basic principles of optical remote sensing. The imagers use tiny CMOS cameras with 
low-cost optical filters to obtain images in red and near-infrared bands, and a more recent version include a blue band.  
The red and near-infrared bands are used primarily for identifying and monitoring vegetation through the Normalized 
Difference Vegetation Index (NDVI), while the blue band is used for studying water turbidity, identifying water and ice, 
and so forth. The imagers are designed to be carried by tethered balloons at altitudes up to approximately 50 m. 
Engineering and physics students at Montana State University-Bozeman gained hands-on experience during the early 
stages of designing and building the imagers, and a wide variety of university and college students are using the imagers 
for a broad range of applications to learn about multispectral imaging, remote sensing, and applications typically 
involving some aspect of environmental science.  
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1. INTRODUCTION 
Spectral imaging provides a wide array of opportunities for students to gain experience with and learn about light, the 
interaction of light with natural objects, and the use of digital imaging systems in remote sensing for studying the natural 
environment. We adopted this as a theme for a NASA minority-serving-institution partnership project involving 
Montana State University (MSU) in Bozeman, Montana, and seven Native American Tribal Colleges in Montana 
(Blackfeet Community College, Salish Kootenai College, Fort Belknap College, Stone Child College, Fort Peck 
Community College, Little Big Horn College, and Chief Dull Knife College). The goals of the project were for a team of 
undergraduate students at MSU-Bozeman to design and build eight copies of a two-channel spectral imager and deliver 
them with complete documentation to the Tribal Colleges, where students would use the imagers in environmental 
science projects with financial support from NASA through the Montana Space Grant Consortium.   

The imaging systems developed in this project were to be built with a parts cost no greater than $1,000 US, and provide 
simultaneous images in the red and near-infrared portions of the spectrum from a tethered balloon that rises to an altitude 
of approximately 50 m (above which FAA clearance is required). The requirement for simultaneous images is driven by 
the instability of the balloon platform, which would make it very difficult to align images in different spectral bands if 
they were acquired with any significant time delay. It was desired for the operators on the ground to have the ability to 
view images in real time and to trigger image acquisition when the desired scene was in the imager’s field of view. The 
balloon payload was limited to 2.3 kg, and it was desired to operate each imager for one hour or longer without charging 
batteries. Finally, a ground-based calibration target was required for each imager, thereby enabling real-time calibration 
of the images to determine the reflectance at each pixel.  
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2. IMAGING SYSTEM DESIGN 
The low-cost, balloon-based imaging systems designed in this project were inspired by our use of multispectral imaging 
of vegetation for detecting CO2 gas leaks through the resulting reflectance changes.1-3 Hyperspectral imaging also has 
been employed for similar purposes.4-6 This research was conducted at an agricultural field west of the MSU-Bozeman 
campus, with support through the Zero Emissions Research and Technology (ZERT) center at Montana State 
University.7 In our multispectral imaging experiments at the ZERT site, we acquire red and near-infrared (NIR) 
reflectance images of the vegetation, and then identify the locations of leaking gas through statistical analysis of the 
reflectances and the Normalized Difference Vegetation Index (NDVI), calculated as follows:  

ܫܸܦܰ        = ఘ೙೔ೝିఘೝ೐೏ఘ೙೔ೝାఘೝ೐೏,       [1] 

where ρ represents the reflectance for red and near-infrared (nir) bands, corresponding to approximately 630-680 nm and 
770-820 nm, respectively.2 Because of chlorophyll absorption, healthy vegetation absorbs in the red and reflects strongly 
in the NIR, beyond the so-called “red edge” at 700 nm.8 Reflectance spectra for healthy and stressed vegetation are 
illustrated in Figure 1, showing that for stressed vegetation the red reflectance rises while the NIR reflectance falls. 
Therefore, a high NDVI value indicates healthy vegetation, and because of a much flatter red-NIR transition, smaller or 
even negative NDVI values can indicate the presence of a material ranging from stressed vegetation to urban materials.  

      
     Figure 1. Visible and near-infrared reflectance spectra for healthy vegetation (green circles) and stressed vegetation (red dots).  

The balloon-borne imagers were designed to allow students to explore the use of the NDVI and related 
reflectance-based remote sensing in the red and near-infrared spectral region. The response of the imagers can 
be moved to other spectral bands by replacing the optical filters that are situated directly in front of the ultra-
low-cost CMOS cameras.  

Figure 2 is a photograph of one of the imaging systems that was built at MSU-Bozeman for use at a Tribal 
College. The two circular objects near the left of this picture are optical filters that define the two spectral 
bands. These filters are optically sealed to the front of the lenses of two tiny CMOS cameras. Just to the right 
of the cameras and filters is a nickel-metal-hydride (NiMH) 12-v battery, and to the right of that are the 
electronics boards. The two boards at the top right of the picture are used to record images from each camera 
onto two SD cards, and the bottom-right board contains a consumer-grade webcam removed from its housing. 
This webcam provides a live view that is transmitted to the ground via a 2.4-GHz wi-fi link that uses the 
black antenna in this picture. The white antenna on the front side is for a wi-fi link that allows the ground-
based operator to trigger image acquisition through a dual-channel 2.4 GHz ZigBee relay.  

In a second phase of the project, we designed and built an enhanced version of the balloon-borne multi-
spectral imager with a blue-green channel along with the original red and NIR ones (Figure 3). This second-
generation system also had a significantly improved live balloon-to-ground video link and an even lower 
weight (1.0 kg, compared to 1.45 kg for the 2-channel imager) and longer battery life (~3 hr, up from ~2). The 
new system uses a 5.8-GHz video transmitter to send the live video from one of the three CMOS cameras. A 

Proc. of SPIE Vol. 8481  84810T-2



NIR image
capture board

Red image
capture board

NIR filter

CMOS

cameras

Webcam
antenna

12V NiMH
battery

ZigBee

antenna

2 .4 -G H z

ZigBee

relays

5.8 -GHz

video
transmitter

NIR image
capture board 12V li -ion

battery

Red image
capture board

B -G image

capture board

NIR filter

Red filter

CMOS

cameras

Blue -green filter
2 4 -GHz

antenna

2.4 -GHz

ZigBee
relays

 

 

three-way switch on the imager module is used while the imager is on the ground to select which camera’s 
output is viewed on the live video feed. An operator then uses a laptop computer with a wi-fi transmitter and 
custom software to trigger an image acquisition when the camera’s field of view contains the desired object.  

  
     Figure 2. Photograph of original two-channel, balloon-borne, multispectral imager with primary subsystems labeled.     

  
     Figure 3. Photograph of second-generation, three-channel imager with primary subsystems labeled. This version has three spectral  
     channels: blue-green, red, and NIR. 

Because the tethered balloon is flown at a relatively low altitude (~50 m), we chose cameras and lenses with a 
wide-angle field of view. The chosen camera was from Electronics123 (model M3186A, cost = $27.50 US) 
with a full-angle field of view approximately equal to 65°×50° with 510×492 pixels. Therefore, with the 
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Table 1 lists the primary components used in the second-generation multispectral imaging system, which 
provided 3 channels instead of 2, in a package that was much lighter than the original system with longer 
battery life. The table also includes nominal specifications and cost for each component. All components are 
in the imaging system except the ZigBee coordinator and 5.8-GHz receiver, which are used on the ground 
with the laptop computer to provide communication with the balloon-borne imager. The table does not 
include items such as the case, switches, wires, connectors, and so forth. With everything included, the total 
parts cost for the second-generation, three-channel multispectral imaging system was $1,100US. The two-
channel systems used parts that cost less than $900.  
Table 1. Parts list for the second-generation multispectral imaging system with nominal specifications and cost 

Component Specifications 2010 cost  Quantity 

M3186A CMOS camera 
(Electronics123) 

200 mW max, 3.7-mm f/2 lens, 
~65°×50° FOV, 1/60 – 1/15,000 s 
integration time, 510×492 pixels 

$27 3 

DVR8106 recording module 
(Electronics123) 

1.8 mW max, 2 GB SD card, 320×240 
video, 640×480 still image capture  

$60 3 

SD card  2 GB  $6 3 

ZR25_ZBMESH ZigBee relay 
(National Control Devices) 

single-pole double-throw  $93 1 

ZBU_COORD ZigBee coordinator 
(National Control Devices)  

5V USB input  $138 1 

NTX100 5.8-GHz video transmitter 
(Ifrontech)  

6-15 VDC, ~92 mA  $100 1 

NRX Nano 5.8-GHz receiver  6-15 VDC, <200 mA  $145 1 

Li-ion battery for remote module 10.8 VDC, 2400 mAh $79 1 

NiMH battery for video receiver  12 VDC, 2600 mAh $30 1 

Rosco 38000 IR/UV block filter 1” diameter $6 4 

Kodak #29 dark red wratten gel filter  100 mm square sheet  16 filters  $54 1 

Kodak #89B NIR pass gel filter  100 mm square sheet  16 filters $108 1 

Kodak #44A blue-green gel filter  75 mm square sheet  16 filters  $95 1 

 

3. EXAMPLE DATA 

Nine multispectral imager systems were built and are being used by a wide variety of students for a broad 
range of applications, but here we show example images obtained during an outreach event with Native 
American middle-school students at MSU-Bozeman. The imager was attached to a helium-filled balloon and 
tethered at an altitude near 50 m on the south side of the MSU campus in a region containing a mixture of 
grass, cement sidewalks, and asphalt streets, as shown in the photograph of Figure 7. In this photograph, the 
balloon is near the top, slightly to the right of center, the black-and-white reflectance calibration panel is near 
the bottom of the picture, just right of center, and the students using a laptop computer with wireless link to 
control the camera are near the lower left. 
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