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Abstract. We investigate the use of a frequency-domain reconstruction algorithm based on the nonuniform fast
Fourier transform (NUFFT) for photoacoustic imaging (PAI). Standard algorithms based on the fast Fourier transform
(FFT) are computationally efficient, but compromise the image quality by artifacts. In our previous work we have
developed an algorithm for PAI based on the NUFFT which is computationally efficient and can reconstruct images
with the quality known from temporal backprojection algorithms. In this paper we review imaging qualities, such
as resolution, signal-to-noise ratio, and the effects of artifacts in real-world situations. Reconstruction examples
show that artifacts are reduced significantly. In particular, image details with a larger distance from the detectors
can be resolved more accurately than with standard FFT algorithms. C©2011 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.3605696]
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1 Introduction
Photoacoustic imaging (PAI) is cross-sectional or three dimen-
sional (3D) imaging based on the photoacoustic effect. PAI com-
bines the advantages of optical imaging contrast with ultrasonic
spatial resolution. In Ref. 1 the reader can find an overview of
current state-of-the-art imaging modalities.

The combination of accurate detectors and efficient recon-
struction algorithms is crucial for a successfully operating PAI
system. Frequency domain algorithms are computationally effi-
cient because they usually rely on an implementation with the
fast Fourier transform (FFT). The standard FFT algorithm has
the major drawback that it requires a uniform sampling of data
points, while the backprojection formula for the photoacous-
tic inverse problem, described below, requires a nonuniform
sampling. Several proposals exist to overcome this problem. In
this work we focus on a novel inversion scheme based on the
nonuniform FFT (NUFFT) as described in Ref. 2. The NUFFT
has been introduced in Ref. 3, and the combination with the
inverse Radon transform for solving tomographic problems was
described in Ref. 4.

This paper is organized as follows: In Sec. 2 we give an
overview of our experimental setup from which the data was
obtained. Then we review the mathematics of the NUFFT re-
construction algorithm in Sec. 3. The most relevant section is
Sec. 4, where we investigate how imaging properties are affected
by the use of the novel algorithm. There, we show its accuracy
when applied to clinically and biologically relevant examples.

Address all correspondence to: Rainer Schulze, Medical University Inns-
bruck, Radiology Department, Anichstraie 15, Innsbruck, 6020 Austria; E-mail:
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Finally, in Sec. 5 we conclude our work by a final discussion of
the investigated algorithms.

2 Experimental Setup
In this section we give a short description of our experimen-
tal setup used to acquire the data for our studies. Our setup
is equipped with an integrating line detector for acquiring the
measurement data (see Ref. 5 for a description of the setup). In-
tegrating line detectors increase the image quality with respect to
the resolution and occurring reconstruction artifacts, especially
if a free-beam interferometric setup is used.6, 7 The integrating
detector used in the presented studies is realized with a free-
beam Mach–Zehnder interferometer (MZI). Optical beams as
part of an interferometer have omnidirectional response,7 but
need focusing in order to achieve high temporal and spatial res-
olution. Our focus was well below 60 μm along the focal length.
Finally, the actual resolution limit is determined by the sampling
density, the involved electronics, and penetration depth. Typical
values are 80 to 120 μm.8

The setup is shown in Fig. 1. The emerging ultrasound waves
propagate through a tank filled with water which acts as a cou-
pling medium between the sample and the detector. The pres-
sure wave leads to a change in the refractive index of the water
and therefore causes a phase shift in the measurement beam of
the MZI. The interferometer is actively stabilized by a piezo-
controlled mirror, which counteracts slow oscillations as well
as long-term drift. Since the optical components have to be
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Fig. 1 Schematic of experimental setup. Ultrasound waves are de-
tected with a free-beam MZI. BS: beam splitter, M: mirror, M+PT: piezo-
stabilized mirror, L: lens, BPF: band-pass filter, PD: photodiodes, HPF:
high-pass filter.

stabilized, it is necessary to move the sample relative to the
beam. As a pump laser, we used an optical parametric oscillator
pumped by an Nd:YAG laser system (Surelite II-10, Continuum,
Santa Clara, California).

Data acquisition for a complete 3D dataset consists of two
steps: First, the sample is moved to a fixed detector position and
rotated about 360 deg. The photoacoustic transient is recorded
for each laser pulse at equidistant angular positions. Having
recorded the signals for all angles and detector positions, a 3D
dataset can be generated as described below.

3 Mathematical Review
In order to describe the data acquisition process outlined above,
we assume that a Cartesian coordinate system is placed beside
an object that is rotated by an angle α. Furthermore, we assume
that the linear integrating detector moves along the y−axis as
described in Fig. 2. If pα denotes the pressure that is emitted by
the rotated object, described by p0α , the measurement data are

Fig. 2 Left: Pressure integrals over lines parallel to the z−axis running
through (0, yd, 0) are collected from an object that has been rotated by
an angle α. Right: Rotating the parallel family of lines instead of the
object yields the Radon transform in each plane R×{y}.

given by

q(yd , t) =
∫

R

pα(0, yd , z, t)dz. (1)

From this data it is possible to obtain the projection

q0α(x, y) =
∫

R

p0α(x, y, z)dz (2)

of the rotated object over the family of lines running through
(x, y) that are parallel to the z−axis. Since it would be equiv-
alent to fix the object and rotate the family of lines, instead
the projections (q0α) provide the Radon transform in each plane
R×{y}, see Fig. 2.

Inverting the two-dimensional Radon transform in each plane
gives the desired 3D reconstruction. In the following we will
focus on the reconstruction of a single projection and thus will
omit α in the following.

The first FFT-based inversion scheme for a similar photoa-
coustic inverse problem using point detectors was proposed in
Ref. 9. For our case the backprojection identity reads

Q0(kx , ky) = 2cky

sign(ky)
√

k2
x + k2

y

Q
(

kx , c · sign(ky)
√

k2
x + k2

y

)
,

(3)
where Q(kx , ω) is the Fourier transform of the measured data
q(xd , ·, t) and Q0(kx , ky) is the Fourier transform of the pro-
jections q0(x, y). In order to derive this, the dispersion relation
ky = √

(ω/c)2 − k2
x ) was used.

It seems a straightforward step to apply the FFT to the data,
scale it back in frequency space using Eq. (3), and apply the FFT
again. However, for equally spaced samples of the frequency,
the use of this dispersion relation implies that ky are sampled
nonequidistant. In other words, the backprojection in frequency
domain via the dispersion relation requires nonuniform sam-
pling of the frequency data points used in the inverse transform.
In order to apply FFT algorithms, which assume sampling on
an equidistant grid, the data points have to be resampled via
interpolation before transforming back to position space. As
discussed in all the works cited above, interpolation in Fourier
space causes considerable artifacts.

One can avoid this problem by using the discrete Fourier
transform (DFT)

T [g](ωk) :=
N−1∑
n=0

e−iωk n2π/N gn, (4)

where g = (gn)N−1
n=0 ∈ C. Note that by expressing the DFT as

above, we do not necessarily impose ωk = kω as is usually done.
Therefore, this sum allows the nodes (ωk)N/2−1

k=N/2 to be sampled on
an arbitrary grid. Evaluating the sums in Eq. (4) requires O(N 2)
operations, which of course does not lead to a fast algorithm.
When using the NUFFT algorithm as presented in Ref. 4, we
have two choices:

� apply standard FFT to the data, then do the inverse trans-
form on a nonuniform grid (via the NUFFT),

� apply NUFFT to the data at nonequidistant grid points in
order to get nonequidistant results in frequency domain,
then do the equidistant inverse Fourier transform.
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The first case is called nonequispaced data and the second
case is called nonequispaced results. As discussed in the refer-
ence, the second option is easier to implement and provides a
faster algorithm.

In the following we will summarize the results obtained in
Ref. 2. Let � : R → R be an appropriate function that satis-
fies:

1. � is continuous inside [−α, α],

2. � is supported in [−α, α],

3. � is positive in [−π, π ],

and let �̂ := F{�} be its Fourier transform. � is called win-
dow function. With this definition, we are ready to explain the
NUFFT algorithm, which is based on the identity

N−1∑
n=0

e−iωn2π/N gn =
∑
j∈Z

e−iπ (ω− j/c)�̂(ω − j/c)Ĝ j , (5)

with

Ĝ j := c

2π

[
N−1∑
n=0

gne−i jn2π/(Nc)

�(n2π/N − π )

]
, j ∈ Z , (6)

where c > 1 is an oversampling factor, α < π (2c − 1) is the
window size, and (gn)N−1

n=0 ∈ C
N is the vector containing the

data. Equation (5) expresses the Fourier transform of the signal
gn evaluated at an arbitrary frequency ω.

The window function �̂ has to be chosen such that it is con-
centrated around zero (and decaying rapidly away from zero).
Then in the summation on the right-hand side of Eq. (5) only
a few terms have to be taken into account. This is the main
approximation in NUFFT-based algorithms. According to the
above references, the Kaiser–Bessel window function is the
best choice such that the approximation error is small. It is
also important to note that we impose cN ∈ N, which allows us
to expand the summation in Eq. (6) to [0, cN − 1]. Then, the
equation represents an oversampled discrete Fourier transform.
This allows us to apply the standard FFT in this step of the re-
construction algorithm simply by appending (c − 1)N zeros to
the data vector gn . We found that c can be chosen smaller than
the typical value of 1.5 that has been used in Ref. 4. We chose
c = 38/32 for all our reconstruction examples. Increasing the
oversampling does not improve the image quality significantly.

For further analysis we refer the interested reader to the
publication by Haltmeier et al.2

4 Applications
The improvements achieved by NUFFT reconstruction are
demonstrated below using several biological and clinical ex-
amples. All data were generated with the PAI system described
above. We examined:

� sutures in order to test whether the use of the algorithm
influences the image resolution limit

� mouse mammary-carcinoma
� zebrafish embryos 2 days-post-fertilization.

Only detector array geometries which fulfill the conditions of
the theoretical derivations are stable. Unstable reconstructions
suffer from artifacts in the projection images. Mainly, pressure

Fig. 3 Sketch of our scanning geometries. Depicted are an L-scan
geometry (left) and a box-scan geometry (right). The shaded gray ar-
eas represent the set of coordinates where a stable reconstruction is
possible.

values below zero are generated in the final image and appear ei-
ther as shadow-like artifacts or an inhomogeneous background.
For the application of FFT-based back projection algorithms as
described above, this has the implication that the detector ar-
ray positions must lie on an infinite straight line, as Eq. (3) has
been derived under this condition. Of course, infinite detector
arrays do not exist in reality, even if approximating by an array
length much larger than the sample size produces some artifacts.
This is known as the limited view problem. Therefore, it was
suggested to make two linear scans perpendicular to each other
such that the detector array encloses the object with a triangle.6

Even better is a box-scan, consisting of three linear scans (in
the directions upward, forward, and downward the sample).10

The two or three reconstructed images are then superimposed.
We used the box scan detector configuration in all examples
discussed below. See also Fig. 3.

All source codes were written in MATLAB (MathWorks, Nat-
ick, Massachusets), and the reconstructions were processed on
a standard 64-bit personal computer. As discussed in Ref. 2, the
overall complexity of the algorithm is O(cN 2 log cN ), provided
that the window functions � are precomputed. The computa-
tional effort for the window functions depends on the choice of
the oversampling c and the number of terms retained in the sum
(6). Let M , a small integer number, denote the number of terms
retained in the sum. Then the complexity of the precomputations
is O(cN M). For example, computation of a 300×300 px image
using the FFT routine took 0.115 s. The NUFFT routine took
0.120 s without, and 0.252 s with precomputations. Notice that
without precomputations, runtimes are comparable.

As described in the following paragraphs, we could show that
the image quality obtained via the NUFFT algorithm is superior
to the FFT-reconstructed images.

4.1 Resolution and Image Quality
As an important remark we point out that the experimental res-
olution limit should not be affected by the use of different al-
gorithms. We test the resolution limit in the two images to out-
rule the possibility that either Fourier domain algorithm causes
smearing artifacts.
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Fig. 4 Normalized gray value profiles and Gaussian fits of two sutures
(diameter 50 μm). On average, the resolution limits are 81.5 μm (FFT
algorithm) and 76 μm (NUFFT algorithm). For a confidence level of
95%, the goodness of the fits is given by R2 = 0.871 (FFT algorithm)
and R2 = 0.887 (NUFFT algorithm). We also show the FWHM values
as horizontal lines (NUFFT: dashed line; FFT: dashed-dotted line).

We measured clinical sutures with a diameter of 50 μm. This
is below the resolution limit of our system, and, therefore, we
can obtain a resolution limit by fitting a Gaussian distribution
to the gray value profile of the sutures. In order to resolve the
Gaussian, the pixel (voxel) size has to be significantly smaller
than the anticipated spatial resolution limit. In this case, the pixel
size was 27 μm. Commonly, one uses full-width-half-maximum
(FWHM) of the Gaussian to quantize the resolution performance
of an imaging system. Therefore, the fitting function ρ(x) reads

ρ(x) = A exp

[
−4 log(2)(x − x0)2

x2
FHWM

]
. (7)

The signals of two sutures lying side by side are depicted in
Fig. 4. A curve fit has been applied to the normalized FFT and
NUFFT gray value profiles. The fit to the FFT data gives 125
and 138 μm for the left and right suture, respectively, giving
an average of 131.5 μm at FWHM. The fit to the NUFFT data
gives 121 and 131 μm for the left and right suture, respectively,
giving an average of 126 μm at FWHM. As the suture does not
imitate a perfect point-spread function, i.e., a Dirac δ-function,
the actual resolution limit is below the above values. Note that
subtraction of the suture diameter as was done for example in
Ref. 11 does not give a correct resolution performance of an
imaging system in general since the finite suture diameter and
detector size lead to a deconvolution problem.

Differences in resolutions using different reconstruction al-
gorithms typically range about 10 μm as can be seen in
Ref. 6, page S90]. Using 95% confidence bounds gives a con-
fidence interval of 114 to 150 μm for the FFT data and 108 to
144 μm for the NUFFT data. We conclude that the resolution
limit is not affected significantly by the use of either algorithm
as expected.

In order to investigate the image quality, we used a phantom
consisting of sutures lying close to each other. The sutures had
diameters 20, 50 and 70 μm. The images are displayed in Fig. 5.
Here, we observe the important fact that images reconstructed

Fig. 5 Sutures of diameters 20, 50, and 70 μm reconstructed (a) with
the FFT algorithm and (b) with the NUFFT algorithm. Observe that the
suture bound to a ribbon (diameter 50 μm) is clearly visible in the
NUFFT image, whereas its lower part is missing in the FFT image.

with the FFT algorithm tend to be biased toward the detector
(located at the upper edge of the images). The bias is due to two
reasons in combination: First, it is never possible to record all
pressure data. On the other hand, the reconstruction algorithm
assumes time data from zero to infinity. The timescale of the
oscilloscope is always chosen as the best compromise between
resolution and best approximation of an infinite time axis. Sec-
ond, the FFT algorithm neglects the nonuniform sampling of
data points in the reconstruction process. Together, this causes
the aforementioned bias. The error varies with the frequencies
occurring in the reconstruction process and cannot be given an-
alytically. As a consequence, the 50 μm suture, which was tied
to a ribbon, is not resolved completely by the FFT algorithm.
The lower part of the ribbon is missing.

Another important aspect is that the shadow-like artifacts
caused by the FFT algorithm are eliminated by the use of the
NUFFT algorithm. Clearly, some of these artifacts in the FFT
reconstructions are also caused by the limited view problem.
Thus, we observe that the NUFFT algorithm is more impervi-
ous to artificial reflections that correspond to the limited view
problem.

We also determined the signal-to-noise ratio (SNR) in both
images. As reference, we chose the signal maximum of the
70 μm suture. We obtained an SNR of ∼43 for the FFT image
and ∼42 for the NUFFT image. This clearly shows that the SNR
itself is not improved by the use of the NUFFT algorithm. In
image analysis the contrast-to-noise ratio (CNR) is important

Fig. 6 Box-scan projection images of an ex vivo mouse carcinoma.
(a) FFT reconstruction. (b) NUFFT reconstruction. The background in
the FFT image appears blurred, whereas in the NUFFT image it is more
homogeneous.

Journal of Biomedical Optics August 2011 � Vol. 16(8)086002-4



Schulze et al.: On the use of frequency-domain reconstruction algorithms...

Fig. 7 Box-scan of 2 day old zebrafish embryos. Two samples: sample
1 measured with box length 19 mm, sample 2 with 13 mm. (a) Mi-
croscope image of sample 1, (b) reconstructed with FFT algorithm, (c)
reconstructed with NUFFT algorithm. (d) Microscope image of sample
2, (e) reconstructed with FFT algorithm, (f) reconstructed with NUFFT
algorithm. Zebrafish embryos were grown as described in Ref. 15. Scan-
ning was performed with paraformaldehyde-fixed embryos [(a)–(c)] or
life embryos [(d)–(f)] embedded in 1.5% low melt agarose.

also. It is given by

CNR = 〈Ss〉 − 〈Sb〉
σ

, (8)

where 〈Ss〉 is the mean value of the (suture) signal, 〈Sb〉 is
the mean value of the background noise, and σ its standard
deviation.11 The resulting CNR’s were ∼34 for the FFT algo-
rithm and ∼38 for the NUFFT algorithm. The quantities are
again comparable, but it seems that using the NUFFT algorithm
improves the CNR slightly.

We also computed the local noise power spectrum for suitable
regions of interest in our images. We found that the use of the
different algorithms again causes no significant differences.

4.2 Test on Biological Samples
Let us begin by explaining the methods used to obtain our sam-
ples. Tumor bearing mouse mammary tumor virus (MMTV)-neu
mice were obtained from the Central Laboratory Animal Facil-
ity of the Innsbruck Medical University (Innsbruck, Austria).
Female individuals serve as a model system for breast cancer
and develop one or more tumors along the mammary ridges
at an age of about 5 to 7 months. A detailed description of
the mouse strain can be found in Guy et al.12 and Parajuli and
Doppler.13 Mice were euthanized by CO2 and sacrificed by cer-
vical dislocation. The tumors were excised and transferred into

Table 1 Pros and cons of the investigated frequency domain
algorithms.

Standard FFT algorithm

Pro Con

No pre-computations

Distortions and shadow-artifacts
biased towards detector array

NUFFT algorithm

Pro Con

Pre-computations necessary

Reduction of artifacts
homogeneous reconstruction area

formaldehyde immediately for conservation. For measurements,
the tumors were embedded into agar and provided with a stick
to enable mounting on the translational stage. All animals were
treated in accordance with the Austrian animal welfare law and
animal experiment act.

For the results, see Fig. 6. Notice that the blurring is signifi-
cantly reduced by the use of the NUFFT algorithm. The detector
positions lie along the top, left, and right margins of the image.
Since the blurring only occurs along the vertical axis, we con-
clude that the limited view effect caused the blurring in the FFT
image as the detection curve does not enclose the bottom of the
image. We observe again that the NUFFT algorithm does not
seem to be affected by this problem so severely.

A main motivation for improving the reconstruction algo-
rithm was to increase resolution of small structures, such as
zebrafish embryos. In the first place, the weak signals obtained
from 2 day old zebrafish embryos could not be resolved in ac-
curate detail (Fig. 7). The images in the first row represent the
first sample, embedded in agar and measured with a box side
length of 19 mm. The images in the second row represent the
second sample, which was measured with a length of 13 mm
because the agar cylinder could be reduced in diameter for this
sample. We see the consequences of two important effects: The
high frequencies caused by the small structures suffer from ul-
trasound attenuation in water. This is a well-known effect.14

Therefore, reducing the box side length and thus reducing the
probe-detector distance considerably increased the image qual-
ity. Again, the homogeneity of the NUFFT images is better than
that of the regular FFT images. The most important observation
is that the embryos further from the detector (lowest regions in
the images) appear blurred and distorted in the FFT images. In
the final configuration, i.e., 13 mm box length and use of the
NUFFT algorithm, the reconstructed image corresponds very
well with the microscopy image.

5 Conclusion and Outlook
In summary, we have shown that the nonuniform FFT recon-
struction algorithm indeed provides superior image quality when
compared to the standard FFT algorithm. This concerns arti-
facts, as well as background gray values, which appear more
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homogeneous for the NUFFT images. We found that resolution
and SNR (CNR) are not significantly improved by the use of
the NUFFT over the standard FFT. We observed that the most
capital improvement of the NUFFT reconstruction is its capa-
bility to reliably resolve image details that are farther away from
the detector than about half the total image distance. In Table 1
we give the pros and cons for the two Fourier algorithms in
summary.
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