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Abstract. The problem of registering point sets with outliers including
noises and missing data is discussed in this paper. To solve this problem,
a novel objective function is proposed by introducing an overlapping per-
centage for partial registration. Moreover, a novel robust iterative closest
point (ICP) algorithm is proposed which can compute rigid transformation,
correspondence, and overlapping percentage automatically at each itera-
tive step. This new algorithm uses as many point pairs as possible to yield
a more reliable and accurate registration result between two m-D point
sets with outliers. Experimental results demonstrate that our algorithm is
more robust than the traditional ICP and the state-of-the-art algorithms.
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1 Introduction
Point set registration is important and complex in image pro-
cessing. One robust and efficient approach to handle this
problem is the iterative closest point (ICP) algorithm,1 but it
cannot effectively register point sets with outliers including
noise and missing data, which exist widely in applications.2

To overcome this problem, some scholars used thresholds or
probability of distances to discard outliers,3 but these meth-
ods need an appropriate threshold which depends on the
structure of point sets and thus is hard to choose. Meanwhile,
some researchers attempted to reject outliers by adopting a
coarse to fine process,4 but the methods often perform poorly
in the case of a large amount of outliers in point sets.

Different from the above-mentioned work, Chetverikov
et al.5 proposed the trimmed ICP (TrICP) algorithm for par-
tially overlapping registration, which incorporates an over-
lapping percentage into a least square function to trim out-
liers. This algorithm, however, is time-consuming in that it
needs to be repeated by traveling all possible overlapping
percentage to search the best result even though Golden Sec-
tion Search is used to accelerate the search speed. Based on
this work, Phillips et al.6 presented the fractional ICP (FICP)
algorithm for much faster speed, which computes the best
correspondence and the overlapping percentage simultane-
ously, whereas the method depends greatly on a parameter
which may lead to a false registration. To cope with the prob-
lem, this paper proposes a new objective function. Moreover,
a novel robust and efficient ICP algorithm is presented to
compute optimal overlapping percentage automatically and
to complete the registration successfully.

2 Problem Statement

Given two point sets in R
m , a model shape M

�= { �mi }Nm
i=1 and

a data shape P
�= { �pi }Np

i=1 (Nm, Np ∈ N). The rigid regis-
tration of m-D point sets is to build up correspondence and
calculate rigid transformation (R, t) between P and M , hence
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min
R,�t,c(i)∈{1,2,···,Nm }

Np∑

i=1

‖(R �pi + �t) − �mc(i)‖2
2

s.t. RTR = Im, det(R) = 1

(1)

where c(i) is the index of the i’th corresponding point in
model shape M .

For partially overlapping point sets P and M , assume
Pr is the overlapping part of P , which can match with M ,
and r denotes the overlapping percentage of P . The goal
of partial registration is to build up the correspondence of
Pr and M , and the distance is

∑
�pi ∈Pr

||R �pi + �t − �mc(i)||22
which increases with r . Hence, to include enough corre-
sponding points as well as to exclude outliers, we divide
the square distance by a penalty function g(r ), an increasing
function with respect to r . As too little overlapping part does
not provide enough information, we assume the overlapping
percentage r varies from 0.5 to 1. Therefore,

min
c,r,Pr ,R,�t

1

eλrλ

∑

�pi ∈Pr

||R �pi + �t − �mc(i)||22

s.t. RT R = Im, det(R) = 1

λ ∈ [λmin, λmax], r ∈ [0.5, 1],

Pr ∈ P, |Pr | = r |P|

(2)

where e(·) is the exponential function, λ is the control param-
eter, and | · | is the cardinality of a set, meaning the number
of elements of the set.

In Eq. (2), it is easily proved that the objective function
is a convex function with respect to r , which means the
computation of r can be easily completed by iteration.

3 Point Set Registration with Outliers
ICP is good in minimizing Eq. (1) by repeating two steps:
compute the closest point in model shape for each point in
data shape and calculate the rigid transformation. As Eq. (2)
is a convex function with respect to r , we compute r at each
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iterative step. Hence, similar to ICP, the objective function
(2) can be optimized iteratively after the initialization:

Step 1. Set up the correspondence with the (k − 1)’th rigid
transformation (Rk−1, �tk−1):

ck(i) = arg min
j∈{1,2,...,Nm }

||Rk−1 �pi + �tk−1 − �m j ||22. (3)

To solve Eq. (3), many efficient methods can be used,
such as the nearest point search algorithm based on
Delaunay triangulations,7 whose computation complexity is
O(Np ln Nm).

Step 2. Compute the k’th overlapping percentage rk and
the subset Prk according to the known control parameter

λ and the corresponding point sets {Rk−1 �pi + �tk−1}Np

i=1 and

{ �mck (i)}Np

i=1 by minimizing the objective functions:

rk = arg min
0.5≤r≤1

∑

�pi ∈Pr

||Rk−1 �pi + �tk−1 − �mck (i)||22/(eλrλ), (4)

Prk = arg min
Pr ⊂P,|Pr |=r |P|

∑

�pi ∈Pr

||Rk−1 �pi + �tk−1 − �mck (i)||22. (5)

Sort the squared distances of {(Rk−1 �pi + �tk−1, �mck (i))}Np

i=1
in an incremental order. Let f (r ) = ∑

�pi ∈Pr
||Rk−1 �pi

+ �tk−1 − �mck (i)||22/(eλrλ). Each time we add paired points
to the subset Pr and compute the new corresponding f (r ).
Finally, we find the minimum f (rk) by traveling all f (r ), and
then select the first rk Np point pairs as the subset Prk .

Step 3. Compute the rigid transformation by minimizing
the following squared distance:

(R∗, �t∗)= arg min
RTR=Im ,det(R)=1

∑

�pi ∈Prk

||R(Rk−1 �pi+�tk−1)+�t− �mck (i)||22,

(6)

Rk = R∗Rk−1, �tk = R∗�tk−1 + �t∗. (7)

With the known correspondence, many closed-form meth-
ods can be used to compute the rigid transformation of
Eq. (6) such as singular value decomposition (SVD).8

Step 4. Let εk = ∑
�pi ∈Prk

||Rk �pi + �tk − �mck (i)||22/(eλrλ
k ).

If |εk − εk−1| is sufficiently small or k reaches a maximum
number of iterations, the inside loop stops with φ(λ) = εk
and λ is updated by λ = λ − λstep. Repeat steps 1 through 3
by decreasing the parameter λ from its maximal value λmax
to its minimal value λmin.

Finally, φ(λ) decreases at the initial stage when λ increases
from λmin to λmax, and the best registration result is located
at the first increasing point of φ(λ).

Discussion on the parameter λ. For Eq. (2), r increases
with λ, namely, a larger λ leads to more point pairs. Following
this, we run the iteration by changing λ in a decreasing order,
which keeps as many point pairs as possible at the beginning
and filters outliers gradually. Otherwise, the algorithm may
easily drop into a local minimum because of insufficient
points.

(a) (b) (c)

(d) (e) (f)

Fig. 1 Registration results on two-dimensional horse shapes. (a) The
original shapes. (b) ICP’s result. (c) TrICP’s result with λ=4. (d) FICP’s
result with λ=1.3. (e) FICP’s result with λ=5. (f) Our method’s result.

For partial registration, using as many point pairs as pos-
sible will yield a more reliable and accurate result. When two
point sets are matched, it is easily proved φ(λ) is a decreas-
ing function with respect to λ. As λ varies from λmin to λmax,
φ(λ) decreases at first and then increases when mismatching
points are found. Therefore, the optimal result is located at
the first increasing point of φ(λ) which guarantees enough
information used in registration.

The proposed algorithm iterates in a similar way as the
ICP algorithm. Despite more steps of our algorithm than the
ICP algorithm at each iteration, both algorithms spend the
same time on the correspondence computation which is the
most time-consuming part. Compared with this, the calcula-
tion time of other steps can be relatively ignored. Therefore,
our algorithm can get similar computation time as ICP, which
is quite fast.

4 Experimental Results
We compare our algorithm with ICP,1 TrICP,5 and FICP,6 in
which the latter two are given different values of λ, and the
results are reported in root-mean-square (RMS) error.

4.1 2D Shapes Registration
Experiments are conducted here on part B of CE-Shape-1
(Ref. 9), where random noise exists on shapes. First, the
totally overlapping bat and horse shapes are used to demon-
strate our algorithm is robust for full registration. Second, to
show the robustness of our algorithm for partial registration,
we select one shape pair and trim down one part of each
shape to make them partially overlap. The compared results
are displayed in Table 1.

As is shown in Table 1, our method always yields a good
registration with small RMS. ICP only deals with registra-
tion of totally overlapping shapes and performs poorly for
trimmed shapes that have a large amount of missing data.
TrICP can complete some partial registration though, it is
quite unstable for different shapes. As TrICP searches the
best overlapping percentage by traveling all possible val-
ues, the results are likely to be similar. FICP achieves on
some shapes, but it substantially relies on the preset value of
λ which varies for different shapes registration. Therefore,
both TrICP and FICP cannot complete full and partial reg-
istration well. In addition, our method automatically obtains
an appropriate value of parameter λ, which not only guaran-
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Table 1 Compared results on two-dimensional shapes.

bat horse trimmed bat trimmed horse

Algorithms λ r RMS λ r RMS λ r RMS λ r RMS

ICP – 1 0.55 – 1 0.52 – 1 19.41 – 1 13.69

TrICP 2 0.98 0.51 2 0.51 6.94 2 0.69 0.49 2 0.88 6.44

TrICP 4 0.98 0.51 4 0.64 9.99 4 0.69 0.49 4 0.88 6.44

TrICP 6 0.98 0.51 6 0.71 13.52 6 0.69 0.49 6 0.88 6.44

FICP 1.3 0.5 9.11 1.3 0.5 6.80 1.3 0.51 15.02 1.3 0.5 8.39

FICP 3 1 0.55 3 0.70 12.59 3 0.70 0.51 3 1 14.26

FICP 5 1 0.55 5 1 0.52 5 1 19.41 5 1 13.69

Ours 6 1 0.53 6 1 0.51 6 0.70 0.50 4 0.80 0.59

Table 2 Compared results on Stanford Database.

Bunny Dragon Happy Budda

Algorithms λ r RMS (×10−3) λ r RMS (×10−3) λ r RMS (×10−3)

ICP – 1 2.05 – 1 1.86 – 1 2.28

FICP 0.95 0.50 0.87 0.95 0.50 0.60 0.95 0.50 0.69

FICP 3 0.91 0.38 3 0.90 0.35 3 0.82 0.26

FICP 5 0.93 0.40 5 0.92 0.38 5 0.83 0.29

Ours 5 0.91 0.35 5 0.90 0.32 5 0.81 0.24

(a) (b) (c)

(d) (e) (f)

Fig. 2 Registration results on three-dimensional Stanford Bunny. (a) The original shapes. (b) ICP’s result. (c) FICP’s result with λ = 0.95.
(d) FICP’s result with λ = 3. (e) FICP’s result with λ = 5. (f) Our method’s result.
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tees a proper overlapping percentage r but also uses as many
point pairs as possible to obtain more accurate registration
results. In bat and horse shapes registration, the largest over-
lapping percentage reaches while RMS is small. One intutive
example of the registration results is shown in Fig. 1.

4.2 3D Range Data Registration
We compare our algorithm with ICP and FICP on Stanford
3D Scanning Repository10 which is acquired from differ-
ent viewpoints in practice. As the database has too many
points and TrICP is too slow and unstable, we do not give the
results of TrICP. In the database, Stanford Bunny (bun000
with 40,256 points and bun 045 with 40,097 points), Dragon
(dragonStandRight_0 with 41,841 points and dragonStan-
dRight_24 with 34,836 points), and Happy Budda (happy-
StandRight_0 with 78,056 points and happyStandRight_24
with 75,582 points) are adopted. The compared results are
shown in Table 2.

Table 2 shows that our method gives the best registra-
tion results with least RMS, and computes the parameter λ
automatically while ICP produces worse results and FICP
performs well only when λ is equal to 3 or 5, which demon-
strates FICP depends on the parameter λ and its results are
unstable. The registration results are displayed in Fig. 2.

5 Conclusion
This paper proposes a novel approach for registration be-
tween two m-D point sets with outliers in the way of incor-
porating an overlapping percentage into the ICP algorithm.
Compared with previous works, our algorithm can automat-
ically compute rigid transformation, correspondence, and
overlapping percentage without influence of a parameter.
Furthermore, the best overlapping percentage is computed
by including as much information as possible, which leads to
a satisfying registration. A series of compared experiments
demonstrate that our algorithm is stable and precise.
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