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Abstract. Clustering analysis (CA) and principal component
analysis (PCA) were applied to dynamic Cerenkov lumi-
nescence images (dCLI). In order to investigate the per-
formances of the proposed approaches, two distinct dy-
namic data sets obtained by injecting mice with 32P-ATP
and 18F-FDG were acquired using the IVIS 200 optical im-
ager. The k-means clustering algorithm has been applied
to dCLI and was implemented using interactive data lan-
guage 8.1. We show that cluster analysis allows us to ob-
tain good agreement between the clustered and the corre-
sponding emission regions like the bladder, the liver, and
the tumor. We also show a good correspondence between
the time activity curves of the different regions obtained by
using CA and manual region of interest analysis on dCLIT
and PCA images. We conclude that CA provides an auto-
matic unsupervised method for the analysis of preclinical
dynamic Cerenkov luminescence image data. C©2011 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3663442]
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Cerenkov luminescence imaging (CLI) is a new preclinical
molecular imaging tool allowing studying the bio-distribution of
beta emitting radiotracers1–7 using preclinical optical imaging
devices.

CLI is based on the detection of visible photons emitted by
charged particles, as electrons and positrons, as they travel into
the tissue with energy greater than Cerenkov threshold. The
basic theory behind CLI was described in Ref. 2.

The main goal of this work was to evaluate the performances
of an unsupervised approach based on cluster analysis (CA) and
principal component analysis (PCA) for the analysis of dynamic
Cerenkov luminescence imaging (dCLI) data.

The dCLI data can be used to study the bio-distribution both
spatially and temporally of radiopharmaceuticals labeled with
beta plus or beta minus emitters. In this work we presented two
examples using both type of radioisotopes.

In the first example attention was focused on measuring the
bio-distribution of 32P-ATP. Such radiotracer has been widely
used for in vitro biology experiments but (to our knowledge) only
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dCLI allow investigating the spatial localization and the time
course of 32P-ATP uptake in a mouse. As will be presented in the
rest of the paper, the use of CA allows us to obtain automatically
the time activity curves (TAC) of different regions like: the back-
ground, liver, bladder, etc. and, at the same time, a segmented
image where all these regions are distinguishable. We believe
that is a robust user independent approach to obtain the planar
localization and the temporal variation of radiopharmaceuticals.

The second example included in the paper was the measure-
ment of time activity curve of 2-[18F]fluoro-2-deoxy-D-glucose
(FDG) in a tumor. Again we will show that also in this case CA
allows us to correctly localize the tumor region and automati-
cally obtain the FDG uptake curve.

CA is a well-known mathematical approach allowing to
group a large data set into a smaller number of clusters hav-
ing similar properties;8 in our case pixels with a similar tracer
kinetics. This is quite a useful tool since it allows to obtain an
automatic unsupervised delineation of the different emission re-
gions and also to extract the corresponding TAC. CA has been
applied in the past to clinical9–11 and small animal dynamic
positron emission tomography.12

CA can be performed by using several possible algorithms,
in this work the k-means clustering algorithm13 has been applied
by using the interactive data language14 ver. 8.1.

Assuming that we are dealing with planar dCLI images
with (pixel basis) m TACs taken at n different time points, the
k-means algorithm13 is based on the minimization for K clusters
of the following objective function:

dK =
K∑

k=1

∑
j∈Ck

‖I j − ck‖2, (1)

where ck and Ij correspond, respectively, to the centroid of the
cluster Ck and to the j’th TAC. More precisely, ck corresponds to
the average of the TACs for the pixels belonging to the cluster
Ck. The k-means clustering algorithm assigns each TAC to one
cluster only.

PCA15 is a technique developed to reduce the dimensional-
ity of a large dataset, and dimension reduction is achieved by
transforming the old variables to a new set of variables called
principal components. The new variables are now uncorrelated
and most of the variance of the data is typically contained in
the first few components. PCA has been recently applied to
in vivo small animals optical imaging using fluorescent dyes.16

In Ref. 16, the time activity curves for several regions of the
mouse were obtained by drawing regions of interest (ROIs) us-
ing the PCA image as a guide.

PCA analysis was performed using a routine written in
MATLAB 7.1 and applied to each pixel of the images acquired
at different time points. An RGB (red, blue, and green) image
was then obtained by combining the first three PCA components
after normalization.

In this work a comparison between TAC obtained by using
CA and by manually drawing ROI respectively on the dCLI and
PCA image was presented.

CLI images were acquired using the IVIS 200 optical im-
ager (Caliper Life Sciences, Alameda, USA). The IVIS 200 is
equipped with a back-thinned, back-illuminated CCD camera
cooled at − 90 ◦C. The CCD has an active array of 1920×1920
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Fig. 1 (a) shows the original CLI image after 60 min from 32P-ATP
tracer injection. (b) and (c) present the clustered images and the overlay
of the two. As one can notice there is good agreement between the
regions of the CLI with the corresponding regions obtained with CA.

pixels with a dimension of 13 μm. The images were acquired
with the following parameters: exposure time equal to 300 s, f
= 1, binning B = 8 and with a field of view = 12.8 cm. The CLI
data were acquired and analyzed with Living Image 4.1 (Caliper
Life Sciences) and were corrected for dark measurements.

As mentioned already, in order to investigate the perfor-
mances of the CA when using dCLI, two distinct data sets
acquired using two different radiotracers were analyzed. The
first set of dCLI was obtained by injecting a control nude mouse
with 10 ± 1 MBq of a pure beta minus radiotracer like 32P-ATP.7

The second data set consisted in a BB1 tumor xenograft mouse
model, in this case the animal was injected with 20 ± 2 MBq of
a pure beta plus radiotracer like FDG.

Dynamic planar CLI scans were performed for 60 min after
tracer injection, more precisely 10 images were acquired every
6 min.

During injection and images acquisition the mouse was kept
under gaseous anesthesia (2% of isoflurane and 1 l/min of oxy-
gen). All the animal handling was approved by the Institutional
Ethical Committee according to the regulations of the Italian
Ministry of Health and to the European Communities Council
(86/609/EEC) directives.

Fig. 2 (a) shows the original CLI image after 60 min from FDG tracer
injection. (b) and (c) present the clustered images and the overlay of
the two. It is interesting to notice that (b) shows a good delineation of
the tumor region.

Fig. 3 The panels (a) and (b) show PCA images obtained respectively
using dCLI 32P-ATP and FDG data. The RGB images were obtained by
combining the first three PCA components after normalization of each
component.

Figures 1 and 2 [panel (a)] present the original CLI images
obtained after 1 h from tracer injection and the corresponding
clustered image [panel (b)]. As one can notice by looking at all
the panels of Figs. 1 and 2, there is good agreement between
regions such as the bladder and the liver of the CLI with the
corresponding regions obtained with CA. In (b) and (c) are
presented, respectively, the clustered images and the overlay of
the two. In particular, Fig. 2(b) shows a good delineation of the
tumor region.

As mentioned previously, the second interesting aspect of
using CA is that it is possible to obtain directly the TAC of the
different emission regions.

Figure 3 shows that the RGB image obtained by combining
the first three PCA components allow a better delineation of
mouse regions with different tracer kinetics. ROI analysis was
performed by using PCA16 as a guide and the dCLI data in order
to investigate the TAC differences with respect to CA.

In Fig. 4 are plotted the TACs of the background, liver, blad-
der and tumor obtained by using CA, and manual ROI drawing.
It is important to notice that the plots in figure 4 show a very
good agreement between the TACs of the same regions obtained
with CA and manual ROI using both dCLI and PCA images
as a guide. However it is useful to remind here that CA allows
automatic TACs measurements being each TAC the centroid of
each cluster.

In order to quantify the agreement between the CA and man-
ual ROI a “worst case scenario” figure of merit f was calculated
as follows:

f = Max

( |ck − cman|
cman

)
, (2)

where ck and cman are, respectively, the values of the clustered
and manual TACs at the different time points. The maximum
value of f was equal to 14% in the background region and less
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Fig. 4 The panel (a) shows the different TACs for the liver, bladder, and mouse background obtained by using CA and by manual ROI drawing on
dCLI and PCA images. The data correspond to the control nude mouse injected with 32P-ATP. As one can see, the plots show very good agreement
between the TACs obtained with CA and manual ROI. The y-axis corresponds to the photons radiance (p/s/cm2/sr). The panel (b) shows the TACs of
the tumor region obtained using CA and by manual ROI drawing on dCLI and PCA images. The data correspond to the BB1 tumor xenograft mouse
model injected with FDG.

than 8% in the bladder liver and tumor regions. These small dis-
crepancies are well within the intrinsic experimental variability
due to manual ROI dimension and position.

To summarize, the results presented in this work show that
CA allows to perform unsupervised region segmentation of dCLI
and to obtain the corresponding TAC. We believe that this frame-
work will provide an easy, user independent approach for the
analysis of small animal pre-clinical dCLI data.

Even if this short communication can be considered as a
proof of principle, however we showed that CA performs quite
well using two different tracers and mouse models. In particular
the application of CA to dCLI of a xenograft mouse injected
using FDG is encouraging since we show that the unsupervised
CA approach can be used to obtain automatically tumor TAC.

Finally, we believe that the CA unsupervised approach can
also be applied to the analyses of conventional bioluminescence
and fluorescence pre-clinical optical imaging.
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