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Abstract. Imaging through multimode fiber (MMF) provides high-resolution imaging through a fiber with cross
section down to tens of micrometers. It requires interferometry to measure the full transmission matrix (TM),
leading to the drawbacks of complicated experimental setup and phase instability. Reference-less TM
retrieval is a promising robust solution that avoids interferometry, since it recovers the TM from intensity-only
measurements. However, the long computational time and failure of 3D focusing still limit its application in
MMF imaging. We propose an efficient reference-less TM retrieval method by developing a nonlinear
optimization algorithm based on fast Fourier transform (FFT). Furthermore, we develop an algorithm to
correct the phase offset error of retrieved TM using defocused intensity images and hence achieve
3D focusing. The proposed method is validated by both simulations and experiments. The FFT-based TM
retrieval algorithm achieves orders of magnitude of speedup in computational time and recovers 2286 ×
8192 TM of a 0.22 NA and 50 μm diameter MMF with 112.9 s by a computer of 32 CPU cores. With the
advantages of efficiency and correction of phase offset, our method paves the way for the application of
reference-less TM retrieval in not only MMF imaging but also broader applications requiring TM calibration.
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1 Introduction
Imaging through multimode fibers (MMFs) of tens to hundreds
of micrometers enables high-resolution imaging by a hair-thin
instrument. It provides minimally invasive high-resolution
imaging for locations deep inside living organisms1 without
traumatic tissue slices.2 Its broad applications include in vivo
endoscopes,3–5 optical tweezers over cellular area,6,7 and remote
time-of-flight 3D depth sensing.8

MMF imaging is achieved by exploiting the property of
transmission matrix (TM). With the TM, one can collect the
feedback signal after rapidly scanning foci on the sample5,9

or directly inverse the scattering process.10,11 However, the cal-
ibration of TM requires measuring the transmitted complex
fields after sending probing incident complex fields. With both
amplitude and phase, the complex fields cannot be measured
directly by a camera. Conventionally, external reference
methods12–14 build a complicated experimental setup to interfero-
metrically measure the transmitted complex field with an exter-
nal reference beam. These methods suffer from phase instability
of the reference beam, easily caused by mechanical variation
and thermal drift. The internal reference methods9,15,16 set parts
of the modulation modes as an internal reference. It reduces the
number of effective modulation modes and uses speckle refer-
ence, which contains dark reference points.1,16 Its retrieved TM
has the phase offset error, excluding applications that require 3D
focusing.6 Therefore, it is desirable to develop a simple and sta-
ble method to measure the full TM in MMF imaging.
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The reference-less TM retrieval methods computationally
recover the TM from the intensity images of the transmitted
complex fields measured by a reference-less experimental setup17

[Fig. 1(a)]. This provides a promising solution to robustly
measure the TM in MMF imaging. However, the application of
reference-less TM retrieval in MMF imaging still faces issues
of long computational time and phase offset error. Algorithms
based on the Bayesian approach,17,18 Gerchberg–Saxton,19 semi-

definite programming,20 Kalman filter,21 prVAMP,22 and re-
weighted amplitude flow23 have been proposed for reference-
less TM retrieval. When the TM is large, the computational time
of these algorithms could be hours.19,22 Another issue is that the
TM acquired by the reference-less TM retrieval has the error of
phase offset.6 The reference-less TM retrieval only maps the in-
cident fields with the intensity images at one fixed camera plane,
causing the loss of relative phase information between different

Fig. 1 TM retrieval with fast Fourier transform (FFT) and phase correction from intensity measure-
ments without reference. (a) Comparison of data acquisition between the reference-less methods
and the reference-based methods. The reference-based methods measure the complex fields
with a reference beam, while the reference-less methods take only intensity without any reference,
leading to a simpler and more stable experimental setup. (b) Computational efficiency improve-
ment using FFT. In the conventional methods, the incident fields are directly generated with ran-
dom phases, and the forward model of scattering has to be computed by matrix–vector
multiplication. Our method designs the incident fields based on the Fourier transform matrix.
Thus the forward model of scattering can be computed by FFT, which significantly improves com-
putational efficiency. It also allows the inverse algorithm of TM retrieval to be implemented with
FFT. (c) Correction of the error of phase offset using defocus intensity images. The estimated TM
from the intensity images measured at one defocus plane has the error of phase offset. Our algo-
rithm corrects the phase errors using the defocus intensity images.
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pixels. The transmitted complex field predicted using the ac-
quired TM with the phase offset error has correct amplitudes
but wrong phases. It causes failure of generating 3D light pat-
terns, such as 3D foci or light sheet, which is essential in volu-
metric imaging24 and light-sheet imaging by MMF.25

Here we propose a fast and phase-offset-error-free reference-
less TM retrieval method and demonstrate with experimental
setup of MMF imaging. First, we design the probing incident
complex fields with Fourier transform matrix and develop a
nonlinear optimization algorithm to solve the TM from the in-
tensity-only measurements. Compared to the scheme of random
probing incident fields,19–21 our scheme allows the inverse algo-
rithm to be implemented with FFT [Fig. 1(b)], which greatly
reduces the computational complexity. Second, our method
measures a set of intensity images at a defocus plane from
the distal end of the MMF and develops an algorithm to recover
the phase offset from the defocus intensity images [Fig. 1(c)].
The simulation shows the TM retrieval algorithm with FFT has a
1200× speedup in computational time compared to that of the
TM retrieval algorithm without FFT. The proposed TM retrieval
method recovers TM for an MMF of 0.22 NA and 50 μm diam-
eter with 112.9 s. We build the experimental setup with MMF
and verify the proposed methods by evaluating the foci in both
2D and 3D.

In addition to MMF imaging, TM measurement is important
to applications that require characterizing the scattering prop-
erty. The applications range from imaging through scattering
media or tissue,26 high-capacity communication through optical
fiber,27 optical computing systems,28,29 quantum networks,30,31

and thin-lens imaging by nano-optics,32 to holographic display
with scattering media.33 As an alternative to the interferometry-
based external reference methods, reference-less TM retrieval
provides a simple and robust way to acquire the TM in these
applications. However, the issues of long computational time
and phase offset error commonly exist, especially when the TM
is large. Our method may be adapted to solve the issues of
reference-less TM retrieval for these applications.

2 Methods

2.1 Experimental Setup

The reference-less experimental setup is shown in Fig. 2. An
MMF of 0.22 NA and 50 μm diameter (ChunHui CCS50/
125H-F-F-1) is used. It aims to generate incident complex fields
impinging on the proximal end of the MMF and measure the
intensity images of the transmitted complex fields of the MMF.
A collimated laser of 488 nm (Precilasers SF-488-0.5-CW) is
directed on a digital micromirror device (DMD, Vialux v9501).
It displays the binary hologram obtained by the Lee hologram
method.34 A set of half-wave plates and quarter-wave plates in-
terposed between the DMD and the polarization beam splitter
PBS1 turns the light reflected from the DMD into circular
polarized light. The s and p lights from PBS1 pass through
the mirrors M2 and M3 separately, combine by the polarization
beam splitter PBS2, and impinge on the iris after being Fourier-
transformed by lens L3. The s and p lights are programmed
with different carrier frequencies on the binary hologram, which
determines the locations the −1st diffraction order on the iris.
Tuning M2 and M3 shifts the −1st diffraction order of the s and
p lights through the pinhole on the iris. The telescope system
formed by lens L4 and the objective lens OBJ1 (Olympus
10× NA 0.25) focuses the light emitted from the iris on the
proximal end of the MMF. Thus the incident complex fields
with desired phases are generated for both polarizations. Dual
polarization modulation allows better control of the transmitted
complex fields, resulting in scanning foci of improved quality
for MMF imaging.13

The 4f system formed by the objective lens OBJ2 (Olympus
20× NA 0.25) and the lens L5 magnifies the transmitted com-
plex field. A CMOS camera (Basler acA720-520um) captures
the intensity image after the light passes through a linear polar-
izer. The synchronization of the DMD (refresh rate of 16.7 kHz)
and the CMOS camera enables measuring the intensity images
at a high frame rate up to 525 frame∕s. By moving the OBJ2

Fig. 2 Experimental setup. The light-modulation module on the left of the MMF simultaneously
generates the incident complex fields for both polarizations, while the calibration module on the
right measures the intensity distribution of the transmitted complex fields. The abbreviations are
defined as follows: L1 to L5, lens; DMD, digital micromirror device; M1 to M3, mirror; HWP, half-
wave plate; QWP, quarter-wave plate; PBS1-2, polarization beam splitter; OBJ1-2, objective lens;
LP, linear polarizer; CMOS, complementary metal oxide semiconductor.
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with a stage (Thorlabs CT1P), the CMOS camera captures the
intensity images at a defocus plane.

2.2 TM Retrieval

Our method recovers the TM from the intensity images mea-
sured from the reference-less experimental setup in Fig. 2. The
data-acquisition measures the intensity images of the transmitted
complex fields for TM retrieval after sending in the phase-only
incident complex fields generated by modulating the DMD.
Next, we develop an efficient nonlinear optimization algorithm
to recover the TM from the intensity measurements.

2.2.1 Pixel-wise inverse problem

The intensity images are denoted as Inðx; yÞ, where
n ¼ 1;…; N, N is the total number of the measured intensity
images, and x; y are the spatial coordinates. Each image contains
Nx × Ny pixels. The incident complex field is raster-scanned
into a vector ejθn, which has Nk modulation modes for both
polarizations. The forward model of the intensity measurement
is written as

In ¼ jTejθn j2; (1)

where In is a vector raster-scanned from Inðx; yÞ, T is the trans-
mission matrix (Nx � Ny × Nk), and j · j takes absolute square of
the complex numbers inside.

The optimization problem of retrieving the TM from the
intensity images is formulated as

min
T

X
n

kIn − jTejθn j2k22; (2)

where j · j22 is the squared L2 norm of the vector inside. The cost
function is the sum of the squared error between the intensity mea-
surements and the intensity predicted by the forward model. The
optimization problem solves T by minimizing the cost function.

The large number of unknown in T makes the optimization
problem in Eq. (2) difficult to solve directly. However, it can be
broken down into Nx � Ny smaller optimization problems. Each
problem is formulated based on the intensity measurement at
one single pixel,

min
tk

fðtkÞ ¼ kIk − jQtkj2k22; (3)

where

Ik ¼

2
666664

Ik1
Ik2

..

.

IkN

3
777775
; Q ¼

2
66664

ejθ1T

ejθ2T

..

.

ejθNT

3
77775: (4)

Here the column vector tk is the transpose of the kth row
of T, Ikn is the kth element of In, T denotes transpose, and
k ¼ 1;…; Nx � Ny. The vector Ik contains all of the measure-
ments at the same pixel indexed by k on the intensity images.
The matrix Q is the so-called probing matrix; each row of Q is
one of the incident fields. Each optimization problem recovers
one row of T from the measurements at the corresponding pixel.

Thus the whole TM can be recovered by solving these small
pixel-wise optimization problems independently.

2.2.2 Inverse algorithm with a designed probing matrix

Conventional reference-less TM retrieval methods19–21 set the
phases of the probing matrix Q as random numbers. It means
that the incident fields are modulated with random phases in
these methods. By contrast, our method designs the matrix Q
with Fourier transform matrix,

Q ¼

2
666664

K diagðejψ1Þ
K diagðejψ2Þ

..

.

K diagðejψMÞ

3
777775
; (5)

where K is the Fourier transform matrix, ejψm is a Nk by 1 col-
umn vector with its phase set as random numbers, diagðejψmÞ is
a diagonal matrix with its diagonal entries from ejψm , and
m ¼ 1;…;M. The incident complex field has Nkx × Nky modu-
lation modes for each polarization, so we have Nk ¼ 2Nkx � Nky.
The total number of measured intensity images is N ¼ M � Nk,
which isM-fold of the size of the unknown complex variable, tk.
We setM ≥ 3, since the complex variable in the inverse problem
contains both real and imaginary parts. The matrixQ consists of
M square matrix in the form ofK diagðejψmÞ, where K is the 2D
Fourier transform matrix for Nkx × 2Nky matrix. Since K is a
pure phase matrix, the probing matrix Q remains as pure phase.
So it can be loaded into the phase modulator to generate desired
incident fields. When the phases of the probing matrix Q are
random,19–21 the multiplication ofQ with a vector has to be com-
puted with matrix–vector multiplication. Our method designs
the probing matrix Q with the Fourier transform matrix, so the
matrix–vector multiplication related to Q can be computed with
FFT or inverse FFT (for its complex transpose QH). This advan-
tage can be exploited to accelerate the algorithm for TM retrieval.

The optimization problem in Eq. (3) recovers the complex
unknown from the intensity measurement and can be viewed
as a phase-retrieval problem. We solve the optimization problem
using the nonlinear optimization phase-retrieval method,35 which
has been developed for phase retrieval from defocus intensity
images. It derives the derivative for the complex variable and
adopts the limited memory Broyden–Fletcher–Goldfarb—
Shanno (L-BFGS) method36,37 to solve the phase-retrieval prob-
lem. The optimization is initialized by backpropagation,

tk0 ¼ ðQHQÞ−1QH
ffiffiffiffi
Ik

p
¼ 1

M
QH

ffiffiffiffi
Ik

p
; (6)

where
ffiffiffiffi
Ik

p
takes the element-wise square root of the vector Ik,

and H denotes the complex transpose. Since KH is the inverse
Fourier transform matrix, the matrix–vector multiplication in
QH

ffiffiffiffi
Ik

p
can be computed with FFT. We derive the first deriva-

tive of fðtkÞ with respect to tk as (more details in Appendix A)

∂f
∂tk

H
¼ −4QH diagðQtkÞðIk − jQtkj2Þ; (7)

∂fH

∂tk
¼ ∂fT

∂tkx
þ j

∂fT

∂tky
; (8)

Zhong et al.: Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform

Advanced Photonics Nexus 056007-4 Sep∕Oct 2023 • Vol. 2(5)



where tkx and tky are the real and imaginary parts of tk. The
matrix–vector multiplication related to Q in Eq. (7) can be
computed with FFT.

The procedure of the algorithm to solve the optimization
problem in Eq. (3) is summarized in Algorithm 1. The algorithm
has inputs of the intensity measurements at kth pixel Ik and ran-
dom phase vectors for the probing matrix ejψm . It recovers one
row of the TM, tk. The estimation is initialized by Eq. (6). After
obtaining the error [Eq. (3)] and gradient [Eq. (7)], the algorithm
updates the estimate of tk iteratively according to the L-BFGS
method. The update iteration stops when a preset maximum
iteration number is reached. The matrix–vector multiplication
related to Q in Eqs. (3), (6), and (7) can be efficiently computed
with FFT, reducing the computational complexity fromΘðNNkÞ
to ΘðN log NkÞ. It also has the benefit of memory efficiency,
since there is no need to explicitly store the big matrix Q when
solving the inverse problem.

2.2.3 Recovery of the whole TM

One may apply the method in Algorithm 1 on all the Nx � Ny

optimization problems in the form of Eq. (3) and recover the
entire TM. However, this could be unnecessary due to the physi-
cal properties of the MMF. There is negligible transmitted light
on the pixels outside the distal end of the fiber. The complex
field at the distal end of the MMF has highest frequency limited
by NA∕λ, where NA is the numerical aperture of the MMF,
and λ is the wavelength. Therefore, we design a preprocessing
procedure to reduce the number of effective pixels, which in
turn brings down the number of optimization problems. First,
we half-sample the measured intensity images by only keeping
the pixels of the odd indices in the images. Without loss of
generality, we assume that the pixel size of the measured inten-
sity images, psintensity, meets the Nyquist sampling theory,

psintensity ≤ λ∕4NA: (9)

So, the pixel size of the half-sampled images has psfield ¼
psintensity � 2. It meets the sampling requirement of the transmitted
complex field,

psfield ≤ λ∕2NA: (10)

The half-sample step reduces the number of the optimization
problems by a factor of 4. Second, from the half-sampled inten-
sity images, we obtain a binary fiber mask, which masks out the
MMF region. The pixels within the distal end of the MMF have
a value of 1, while the pixels outside of the MMF have a value
of 0. For the pixels in the zero-value region, the vectors tk are
directly set to zeros, without solving the optimization problem
of Eq. (3). At the end, our TM retrieval method only solves
the optimization problems from the half-sampled intensity images
for the pixels inside the distal end of the fiber. Thus the number of
optimization problems is greatly reduced.

The full procedure of the TM retrieval method is summarized
in Fig. 3. The optimization problems of Eq. (3) are independent.
So our method solves these optimization problems in parallel
with a computer of multiple CPU cores, which can be easily
implemented by parfor on MATLAB.

2.3 Phase Correction

The optimization problem in Eq. (3) has the issue of phase
ambiguity. It means multiplying an optimal solution of the

Fig. 3 Full procedure of the TM retrieval method. The intensity
images are measured at one fixed camera plane.

Algorithm 1 Optimization of recovering a row of TM tk .

1: input: the intensity measurements at k th pixel, Ik , and random phase vectors, ejψm , m ¼ 1;…;M .

2: tk0← compute Eq. (6) with FFT ▹ initialization

3: i ter←0

4: while i ter < maxiter do

5: i ter←i ter þ 1

6: f ðtkiter−1Þ← compute Eq. (3) with FFT ▹ error

7: ∂f
∂tk jtki ter−1← compute Eq. (7) with FFT ▹ gradient

8: Δtk←L − BFGS
�
f ðtki ter−1Þ; ∂f

∂tk
��
tk
i ter−1

�
9: tkiter←tkiter−1 − Δtk

10: end while

11: return tki ter
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optimization problem with an arbitrary phase term, ejϕ0 still
gives an optimal solution. The phase ambiguity leads to the error
of phase offset between the estimated TM and the true TM.
It has

Ttrue ¼ diagðejϕÞTest; (11)

where Ttrue is the true TM, Test is the estimated TM, and the
vector ejϕ is the phase offset (size Nhalf

x � Nhalf
y × 1). Note that

Nhalf
x and Nhalf

y are the size of the half-sampled intensity image,
due to the preprocessing step in Fig. 3.

In order to generate foci at the measurement plane of the in-
tensity images, the incident complex fields are modulated with
phases of the conjugate of the estimated TM row by row. The
phase offset error of Test still allows pixel-wise constructive
interference, resulting in the generation of 2D scanning foci at
the measurement plane. However, to generate foci at other focal
planes, the incident complex fields are modulated with a free-
space-propagated version of Test. The phase offset error causes
random error in the propagated TM, leading to failure of gen-
erating 3D distributed foci at other focal planes.

To solve the issue of phase ambiguity, we propose a phase
correction method after Test has been obtained by the TM
retrieval method in Fig. 3. Our method corrects the phase offset
using multiple defocus intensity images. After applying random
phases to modulate the incident fields, our method measures in-
tensity images at a defocus plane that is zd away from the distal
end of the MMF (z ¼ 0). The defocus intensity images results
from free-space propagation of the transmitted complex field
at the distal end of the fiber. These defocus intensity images
capture the phase information of the transmitted complex fields.
Therefore, it is possible to invert the phase offset of the esti-
mated TM from the defocus intensity images.

We build the forward model for the inverse problem of the
phase offset recovery from the defocus intensity images. The
defocus intensity images are denoted with Indðx; y; zdÞ, where
nd ¼ 1;…; Nd. Each intensity image has a size of Nx × Ny with
pixel size of psintensity. From Eq. (11), the transmitted complex
field at the distal end of the MMF can be expressed as

cnd ¼ diagðTeste
jθnd Þejϕ; (12)

where ejθnd is raster-scanned from the corresponding incident
complex field of the defocus intensity image, Indðx; y; zdÞ.
Note that the transmitted complex field predicted by the esti-
mated TM has a size of Nhalf

x × Nhalf
y with pixel size of psfield.

The vector cnd is the raster-scanned form of the transmitted
complex field.

The complex field at the defocus plane and the transmitted
complex field at the distal end of the MMF are related by de-
focus propagation. The forward model of the defocus intensity
can be expressed as

Ind ¼ jKH
2 P diagðhÞK1 diagðTeste

jθnd Þejϕj2; (13)

where the vector Ind is raster-scanned from Indðx; y; zdÞ, K1 is
the Fourier transform matrix for the Nhalf

x × Nhalf
y matrix, h is the

defocus propagation kernel (more in Appendix B), P is for zero
padding in the frequency domain, and KH

2 is the inverse Fourier
transform matrix for the Nx × Ny matrix. The measured inten-
sity has a size of Nx × Ny, whereas the transmitted complex

field has a size of Nhalf
x × Nhalf

y . The zero padding here adds
zeros in the frequency domain, which results in doubling the
number of pixels in both dimensions. It has the effect of revers-
ing the half-sample step in Fig. 3.

The optimization problem of solving the phase offset from
the defocus intensity images is formulated as

min
ϕ

gðϕÞ ¼
X
nd

kInd − jAnde
jϕj2k2

2
; (14)

where And ¼ KH
2 P diagðhÞK1 diagðTeste

jθnd Þ. The cost function
is defined as the squared error between the measured defocus
intensity and the intensity predicted with the phase offset.

The first derivative of the optimization problem in Eq. (14) is
derived as

∂g
∂ϕ

H ¼
X
nd

real½−4 diagð−je−jϕÞAH
nd diagðAnde

jϕÞ

× ðInd − jAnde
jϕj2Þ�: (15)

More details can be found in Appendix C. The matrix–vector
multiplication related to And in Eqs. (14) and (15) can be com-
puted with FFT, without explicitly forming the big matrices.
With the cost function in Eq. (14) and the first derivative in
Eq. (15), our method uses the L-BFGS method36,37 to recover
the phase offset from the defocus intensity images.

3 Results for TM Retrieval Using Intensity
Images at One Measurement Plane

In this section, we verify the TM retrieval algorithm using
intensity images measured at one fixed plane (Fig. 3) by both
simulations and experiments. In the simulation, a TM of size
9216 × 8192 was used to generate simulated data. The TM
had been measured experimentally by the off-axis holography
method13 with an external reference beam, for an MMF of
0.22 NA and 50 μm diameter. The incident complex fields had
64 × 64 phase modulation modes for each polarization. The
matrix K in the probing matrix was set as the Fourier transform
matrix for a 64 × 128 matrix. The transmitted complex fields at
the distal end were sampled with 96 × 96 pixels. We simulated
seven datasets with M ¼ 3 to 9, where M is the total number of
K diagðejψmÞ in Eq. (5).

We ran the TM retrieval algorithm on each of the simulated
datasets. The entire TM was recovered by applying the method
in Algorithm 1 on all of the 9216 pixels, without the preprocess-
ing step in Fig. 3. For each dataset, the optimization problems
were solved in a parallel manner on a computer with 32
CPU cores (Intel Xeon Gold 5218 2.3 GHz). For the dataset
of M ¼ 8, it took 376.4 s to retrieve the entire TM of size
9216 × 8192. Figure 4 compares the error of the recovered
TM using the datasets of different measurement sizes. It
shows the root-mean-square error (RMSE) of both amplitude
[Fig. 4(a)] and phase [Fig. 4(b)] of the recovered TM. Each row
of the recovered TM is compared with its true value, and the
errors of all of the 9216 rows are organized in 96 × 96 grids,
which are shown in Fig. 4. The phase error is obtained by sub-
tracting the phase of each row of the recovered TM with the true
values after removing the constant phase offset [Eq. (11)]. For
M ¼ 3, most rows of the recovered TM have large errors. For
M ¼ 4 to 6, a few of the rows of the recovered TM have large
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errors; there are random bright spots (meaning large errors) in
the images at the top row of Figs. 4(a) and 4(b). However, these
speckles disappear as M increases. The error of the recovered
TM becomes negligibly small for M ¼ 7 to 9. The plots on
the bottom left on Figs. 4(a) and 4(b) show the RMSE of both
amplitude and phase of the recovered TM converge to zero for
M ¼ 7 to 9. The simulation demonstrates the proposed TM
retrieval method is able to efficiently recover the TM from the
intensity images measured at one imaging plane with negligible
errors.

Table 1 shows the speedup of computational time by the pro-
posed TM retrieval with FFT. The central 32 × 32 pixels of
the 96 × 96 pixels of the dataset of M ¼ 8 were used to access
the computational time of the TM retrieval algorithms. The TM
retrieval algorithm without FFT replaces the FFT in Algorithm 1
with matrix–vector multiplication. The TM retrieval algorithm
without FFT recovers the 1024 × 8192 TM with 43,664.1 s
(12.1 h). However, the proposed TM retrieval algorithm imple-
mented with FFT recovers the same-sized TM with 35.4 s.
For the proposed algorithm, each row of the TM takes 0.035 s
on average. Using FFT, the proposed TM retrieval algorithm
achieves 1200× speedup.

In the experiment, we used an MMF of 0.22 NA and 50 μm
diameter. The illumination was laser of 488 nm. The DMD
achieved 64 × 64 phase modulation for each polarization,
resulting in 8192 modes in total. We tested the TM retrieval
algorithm for the cases of M ¼ 4 to 8. Each case followed
the procedure in Fig. 3 to recover the TM. For each case, we
generated the probing matrix with random phase vectors and
Fourier transform matrix by Eq. (5). The matrix K was set
as the Fourier transform matrix for a 64 × 128matrix. The phase
of the probing matrix was loaded into the DMD, and a series of
M � 8192 images [Fig. 5(a)] were measured. Each image has
128 × 128 pixels, with a pixel size of 0.47 μm. The preprocess-
ing step half-sampled the measured images and obtained images
of 64 × 64 [Fig. 5(b)]. From the sum image of the preprocessed
images, we calculated the fiber mask [Fig. 5(c)], which covers
99.9% of the total energy. The white region of the mask indi-
cates the distal end of the MMF fiber. Only for the pixels inside
the fiber mask, the TM was retrieved by Algorithm 1 from the
preprocessed images of each dataset.

Here we give an example of the case of M ¼ 7. The probing
matrix has a size of 57,344 × 8192. The preprocessed intensity
images contain 57,344 images of size 64 × 64. The number of
pixels inside the white region of the fiber mask is 2286, so the
retrieved TM has size of 2286 × 8192. For each selected pixel,
an optimization problem in the form of Eq. (3) is formulated;
it has inputs of the intensity measurement at the corresponding
pixel (a vector of 57,344 × 1) and the random phase vectors
used to generate the probing matrix. All these 2286 optimization
problems were solved in parallel on the computer with 32 CPU
cores. For the case of M ¼ 7, the computer takes 112.9 s to
solve the optimization problems in TM retrieval.

Fig. 4 Error of recovered TM using the simulated datasets. (a) Normalized amplitude error of the
recovered TM for datasets of different M. The errors of M ¼ 3 to 5 share the same color bar on
the top right, while the errors of other data sets share the color bar on the bottom. The plot at the
bottom left shows the RMSE of amplitude of the recovered TM. (b) Phase error of the recovered
TM for data sets of different M . The errors of M ¼ 3 to 5 share the top right color bar, while the
errors of the other data sets share the bottom color bar. The plot shows the RMSE of phase of
the recovered TM for different M .

Table 1 TM retrieval algorithmwith FFT achieves 1200× speedup.

Method 1024 × 8192 TM
Average time
for one row

TM retrieval without FFT (s) 43,664.1 42.641

TM retrieval with FFT (s) 35.4 0.035

Zhong et al.: Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform

Advanced Photonics Nexus 056007-7 Sep∕Oct 2023 • Vol. 2(5)



The accuracy of the recovered TMwas tested by the ability to
generate foci at the measurement plane. After the TM was re-
trieved for each case, we uploaded the phase of the conjugate
complex of the recovered TM into the phase modulator, sequen-
tially modulated the incident field with its phase row by row, and
measured the generated intensity images. When the displayed
phase of a row of the retrieved TM matches with the true
TM of the imaging system, a focus is generated at the camera.
In order to evaluate the quality of the focus, we measured two
images (128 × 128 pixels) for each focus with an exposure time
of 70 and 1400 μs (over exposure at the focus) and calculated
the power ratio (PR) of the focus by combining these two im-
ages. The PR is the ratio of the signal to the total energy.1 The
signal is the sum of the 7 × 7 pixels near the peak of the focus
using the 70 μs image, while the total energy is the sum of the

signal and the background (outside the 7 × 7 pixels), which is
calculated using the 1400 μs image. The PR reflects the quality
of the focus, and hence experimentally shows the correctness of
the retrieved TM.Wemeasured a TM by the off-axis holography
method with an external reference beam and acquired the cor-
responding focal images. The result by the holography method
acts as a reference for our method. Figure 5(d) shows the PR of
the foci of cases of different M and the holography method. For
the cases M ¼ 4 to 6, there are several foci that have a low PR.
However, for the cases of M ¼ 7,8, the overall quality of the
foci is near to that of the holography method. The average
PR of the case of M ¼ 8 is 0.64, which is slightly lower than
that of the case of holography (0.651). Figures 5(e) and 5(f)
further compare the cases ofM ¼ 8 and holography by showing
the distribution of the PR and a sum projection of several

Fig. 5 Comparison of the foci generated using the recovered TM and the TM measured by the
off-axis holography method. (a) Series of measured speckle intensity images. We give an example
of the measured images using the data set of M ¼ 7. (b) Prepossessing step half-samples the
measured 128 × 128 images into 64 × 64 images. (c) Binary fiber mask (M ¼ 7). The white region
of the mask indicates the distal end of the MMF fiber. (d) Recovered PR of M ¼ 4 to 8 and the
recovered PR of the holography method. For the cases ofM ¼ 7 and 8, the PR of the foci is near to
that of the case of holography. The number inside the image is the average of the top 2000 PR.
(e) Histogram of the top 2000 PR. The TM ofM ¼ 8 has 1424 foci that have PRs higher than 0.60,
whereas the holography method has 1266 foci above 0.60. (f) Sum projection of selected foci.
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selected foci. The TM retrieval method by M ¼ 8 has more
foci of PR above 0.60 than that of the holography method.
And hence, the accuracy of the TM recovered by our proposed
reference-less method is validated by comparing with the holog-
raphy method.

4 Results for TM Retrieval with Phase
Correction

In this section, we validate the TM retrieval algorithm with
phase correction. For simulation, we used a simulated TM of
size 16,384 × 9216 for an MMF with 0.22 NA and 100 μm
diameter, generated by solving Maxwell’s equations.38 The
transmitted complex fields of the MMF are sampled by 128 ×
128 grids with a pixel size of 1.1667 μm, and the wavelength of
illumination is 532 nm. We designed a probing matrix with 2D
Fourier transform matrix for a 96 × 96 matrix and M ¼ 9.
A series of 82,944 images of size 128 × 128 were generated
at the distal end of the fiber (z ¼ 0 μm). Then we simulated
50 defocus images [Fig. 6(a)] at zd ¼ 50 μm away from the
distal end of the MMF. Each image has 256 × 256 pixels with
a pixel size of 0.5833 μm. The incident complex fields were
obtained by 50 random phases, and the defocus intensity images
were generated by Eq. (13).

We first followed the preprocessing step and the optimization
step of the procedure in Fig. 3 to recover the TM from the
simulated data. In the preprocessing step, the half-sample step
was not performed, since the pixel size already meets the

sampling requirement of the complex field. A fiber mask
was generated, resulting 6668 selected pixels inside the white
region. For the selected pixels, the optimization problems in
the form of Eq. (3) were solved, and the rows of the recovered
TM corresponding to the black region in the mask were set to
zeros. Thus a recovered TM was obtained but has the error of
phase offset, since the measured intensity images were at one
fixed plane. Next, the phase offset was solved from the defocus
images and the recovered TM by the phase-correction algo-
rithm. The computational time for the TM retrieval and the
phase correction was 332.9 and 85.2 s, respectively. Figure 6(b)
shows the recovered phase offset by the algorithm. Finally,
we compensated the phase offset error of the recovered TM
using the recovered phase. The amplitude and phase RMSE
of the recovered TM with phase correction is 6.4 × 10−10
and 3.9 × 10−5, respectively. The error between the recovered
TM with phase correction and the true TM is small, as shown
in Fig. 6(c).

We further validated the TM algorithm with phase correction
by experimentally displaying 3D foci. In the experiment, we
used an MMF of 50 μm diameter and 0.22 NA, and illumination
wavelength of 488 nm. The phase modulation on DMD had
64 × 64 modes for each polarization. We designed a probing
matrix using Fourier transform matrix for a 64 × 128 matrix,
and M ¼ 8. After modulating the DMD with the phase of
the probing matrix, we sequentially measured 65,536 intensity
images at the distal end of the MMF (z ¼ 0 μm). Each image
has 192 × 192 pixels with a pixel size of 0.4182 μm. In order to
correct the phase offset, we measured 50 images of 192 × 192 at
40 μm away from the distal end [Fig. 7(a)]. The defocus images
were measured after applying 50 random phases on the phase
modulator.

We first recovered a TM from the intensity images measured
at z ¼ 0 μm by the proposed method in Fig. 3. In the prepro-
cessing step, we half-sampled the images to a size of 96 × 96
and generated a fiber mask, which has 3015 pixels inside the
white region of the mask. By solving the optimization problems,
the TM retrieval algorithm obtained a TM with the error of the
phase offset. Next, the algorithm of phase correction recovered
the phase offset [Fig. 7(b)] from the defocus intensity images.
The recovered phase offset was used to correct the error of phase
offset in the recovered TM. The computational time for the
algorithm of TM retrieval and the algorithm of phase correction
were 199.3 and 20.6 s, respectively.

We tested the recovered TM by generating 3D foci on the
imaging system. The propagated TM at a defocus distance could
be obtained by adding the recovered TM at z ¼ 0 μm with a
free-space defocus propagation. We generated the two sets of
propagated TMs at z ¼ 0;−20;−40;−60;−80, and −100 μm,
using the recovered TM with the error of phase offset and the
recovered TM with phase correction. We sequentially applied
the phases of complex conjugate of the propagated TM to the
DMD and measured intensity images at the corresponding
defocus distances. Figure 7(c) compares the intensity images
measured at different defocus distances for the foci at the center
of the images. For the case of the TM with phase error, the focus
could be seen at the image center for z ¼ 0 μm, but it quickly
scattered into random patterns at other defocus distances [top
row of Fig. 7(c)]. The phase offset error causes the failure in
generating 3D foci. In contrast, the propagated TM generated
using the recovered TM with phase correction successfully gen-
erated the foci at defocus distances [bottom row of Fig. 7(c)].

Fig. 6 Simulation for the TM retrieval algorithm with phase
correction. (a) Defocus intensity images measured for the phase
correction. (b) Recovered phase offset by the phase correction
algorithm. (c) Amplitude error and phase error of the recovered
TM with phase correction. The amplitude error is obtained by
subtracting the amplitudes of the corrected TM with the true TM.
The phase error is the difference between the phases of the cor-
rected TM and the true TM after removing a constant phase off-
set. The RMSE of all rows of the TM are organized in 128 × 128
grids, corresponding to the distal end of the MMF. The numbers
inside the images are the RMSE over all rows.
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As the defocus distances increase from 0 to 100 μm, the PRs
of the foci reduce from 0.60 to 0.51. The decrease of focus
brightness could be caused by the defocus propagation. It adds
more correlation for the rows of propagated TM corresponding

to the neighborhood pixels. Figure 8 shows the sum projection
of selected foci at different defocus distances generated by the
recovered TM with phase correction. This validates the algo-
rithm of the TM retrieval with phase correction.

Fig. 7 Correction of the phase offset error in the TM using defocus intensity images. (a) Stack of
defocus images. (b) Recovered phase offset by the phase correction algorithm. (c) The intensity
images generated using the TM with the error of phase offset and the recovered TM with phase
correction. The top row shows the measured intensity images using the TM with the error of phase
offset. The foci scattered at large defocus distances. The bottom row shows the measured inten-
sity images using the recovered TM with phase correction. The top row images of −40, −60, −80,
and −100 μm share the top color bar, whereas the other images share the bottom color bar.

Fig. 8 Sum projection of selected foci measured at different defocus distances.
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5 Discussion
The optimization problem in Eq. (3) is a phase-retrieval prob-
lem. The cost function of the phase-retrieval problem is formu-
lated based on intensity difference, which is suitable for the
assumption that the intensity measurements are polluted by
Gaussian noise. With the assumption of Poisson noise, the cost
function can be formulated with amplitude difference.39 Many
algorithms have been proposed for the phase-retrieval problem,
including gradient descent,40 Gerchberg–Saxton,41 Kalman
filtering,42 L-BFGS,35,43 modified Gauss Newton,35 Wirtinger
flow,44 prVBEM,45 PhaseLift,46 reweighted amplitude flow,47

and PhaseMax.48 The L-BFGS method is a second-order opti-
mization method, which was shown to converge faster than the
first-order methods, such as gradient descent or Gerchberg–
Saxton in phase retrieval from defocus images35 and Fourier
ptychography.39 In this work, we used the intensity-based cost
function and the L-BFGS method. A fair assessment of the
formulation of the cost function and the optimal choice of the
algorithm for the phase-retrieval problem in the TM retrieval is
outside the scope of this work.

This work proposed to design the probing matrixQ (N × Nk)
with the Fourier transform matrix. Using FFT, the computa-
tional complexity of the matrix–vector multiplication related
to Q and QH reduces from ΘðNNkÞ to ΘðN logNkÞ. Here
we give an example of the number of modulation modes Nk ¼
8192 and the number of measurements N ¼ 65,536. The matrix
Q has a size of 65,536 × 8192. The computational complexity
reduces from Θð65,536 × 8192Þ to Θð65,536 × 13Þ, and it is
memory-efficient without storing Q. The computation related
to the probing matrix Q is mostly inevitable in the algorithms
of the phase-retrieval problem in TM retrieval. For example,
gradient descent-based algorithms have to compute the cost
function and gradient descent. The computational complexity
of these algorithms is lower-bounded by ΘðNNkÞ, due the
matrix–vector multiplication related to Q. It is higher than that
of our proposed method using FFT ΘðN logNkÞ. However, ap-
plying the similar FFT-based scheme in these algorithms could
further reduce the computational complexity.

6 Conclusion
We have proposed a fast and phase-offset-error-free method for
reference-less TM retrieval. By designing the probing incident
complex fields with a Fourier transform matrix, the FFT-based
TM retrieval algorithm achieves orders of magnitude of im-
provement in computational complexity [ΘðN logNkÞ] versus
[ΘðNNkÞ]. Further, the algorithm corrects the error of phase
offset in the TM retrieval using the defocus intensity images.
We have tested the proposed TM retrieval method by both
simulations and experiments with MMF. It has been experimen-
tally demonstrated 1200× speedup in recovering the TM of size
2286 × 8192 with 112.9 s for the MMF of 0.22 NA and 50 μm
diameter by the computer of 32 CPU cores. This work validated
the method by evaluating 2D and 3D foci with the experimental
setup using MMF. With the advantage of computational effi-
ciency and the correction of phase offset, the method may be
adapted to efficiently calibrate the TM of scattering media or
imaging systems without reference for applications, such as
diffusers,22 optical communication,49 3D holography displays,33

quantum networks,30,31 optical computing system,28 and thin lens
imaging system.32

7 Appendix A: Derivation of the First
Derivative in the TM Retrieval

The optimization problem to recover one row of the TM is
expressed as

min
tk

fðtkÞ ¼ kIk − jQtkj2k22: (16)

Next, we define

F ¼ Ik − jQtkj2; (17)

fðtkÞ ¼ FHF; (18)

where F is a vector. According to the chain rule, the first deriva-
tive of the cost function can be written as

∂f
∂tk

¼−∂f
∂F

∂F
∂tk

¼−∂f
∂F

∂jQtkj2
∂tk

¼−4FH diagðconjðQtkÞÞQ: (19)

Thus we have the Hermitian of the first derivative as

∂f
∂tk

H
¼ −4QH diagðQtkÞF ¼ −4QH diagðQtkÞðIk − jQtkj2Þ:

(20)

8 Appendix B: Defocus Propagation
According to the theory of angular spectrum propagation,50 the
defocus propagation kernel in frequency domain is expressed as

hðu; v; zdÞ ¼ exp

�
j
2π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλuÞ2 − ðλvÞ2

q
zd

�
pðu; vÞ; (21)

where λ is the wavelength of the illumination, u and v are the
spatial frequency coordinates, and pðu; vÞ is the pupil of the
imaging system. The pupil is written as

Pðu; vÞ ¼
�
1; λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
≤ NA;

0; λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
> NA:

(22)

The vector h is raster-scanned from hðu; v; zdÞ.

9 Appendix C: Derivation of the First
Derivative in the Algorithm of Phase
Correction

The optimization of solving the phase offset from the defocus
intensity images is rewritten as

min
ϕ

gðϕÞ ¼
X
nd

kInd − jAnde
jϕj2k2

2
; (23)

where And ¼ KH
2 P diagðhÞK1 diagðTeste

jθnd Þ. Next, we define

Gnd ¼ Ind − jAnde
jϕj2; (24)

gnd ¼ GH
ndGnd : (25)

Zhong et al.: Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform

Advanced Photonics Nexus 056007-11 Sep∕Oct 2023 • Vol. 2(5)



Using the chain rule, we have

∂gnd
∂ejϕ

¼ − ∂gnd
∂Gnd

∂Gnd

∂ejϕ
¼ − ∂gnd

∂Gnd

∂jAnde
jϕj2

∂ejϕ

¼ −4GH
nd diag½conjðAnde

jϕÞ�And : (26)

We can have

∂ejϕ

∂ϕ
¼ diagðjejϕÞ: (27)

By combining Eqs. (26) and (27), we can get

∂gnd
∂ϕ

¼ realf−4GH
nd diag½conjðAnde

jϕÞ�And diagðjejϕÞg: (28)

It is easy to obtain

∂gnd
H

∂ϕ
¼ real½−4 diagð−je−jϕÞAH

nd diagðAnde
jϕÞ

× ðInd − jAnde
jϕj2Þ�: (29)

So, we have

∂gH

∂ϕ
¼

X
nd

∂gnd
H

∂ϕ

¼
X
nd

real½−4 diagð−je−jϕÞAH
nd diagðAnde

jϕÞ

× ðInd − jAnde
jϕj2Þ�: (30)
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