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Abstract. As an optical processor, a diffractive deep neural network (D2NN) utilizes engineered diffractive
surfaces designed through machine learning to perform all-optical information processing, completing its
tasks at the speed of light propagation through thin optical layers. With sufficient degrees of freedom, D2NNs
can perform arbitrary complex-valued linear transformations using spatially coherent light. Similarly, D2NNs
can also perform arbitrary linear intensity transformations with spatially incoherent illumination; however, under
spatially incoherent light, these transformations are nonnegative, acting on diffraction-limited optical intensity
patterns at the input field of view. Here, we expand the use of spatially incoherent D2NNs to complex-valued
information processing for executing arbitrary complex-valued linear transformations using spatially incoherent
light. Through simulations, we show that as the number of optimized diffractive features increases beyond a
threshold dictated by the multiplication of the input and output space-bandwidth products, a spatially incoherent
diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical
image encryption using incoherent illumination. The findings are important for the all-optical processing of
information under natural light using various forms of diffractive surface-based optical processors.
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1 Introduction
The recent resurgence of analog optical information processing
has been spurred by advancements in artificial intelligence (AI),
especially deep-learning-based inference methods.1–9 These
advances in data-driven learning methods have also benefited
optical hardware engineering, giving rise to new computing
architectures such as diffractive deep neural networks (D2NN),
which exploit the passive interaction of light with spatially
engineered surfaces to perform visual information processing.
D2NNs, also referred to as diffractive optical networks, diffrac-
tive networks, or diffractive processors, have emerged as

powerful all-optical processors9,10 capable of completing various
visual computing tasks at the speed of light propagation through
thin passive optical devices; examples of such tasks include
image classification,11–13 information encryption,14–17 and quan-
titative phase imaging (QPI),18,19 among others.20–24 Diffractive
optical networks comprise a set of spatially engineered surfaces,
the transmission (and/or reflection) profiles of which are opti-
mized using machine-learning techniques. After their digital
optimization (a one-time effort), these diffractive surfaces are
fabricated and assembled in 3D to form an all-optical visual
processor, which axially extends at most a few hundred wave-
lengths (λ).

Our earlier work10,25 demonstrated that a spatially coherent
D2NN can perform arbitrary complex-valued linear transforma-
tions between a pair of arbitrary input and output apertures if its
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design has a sufficient number (N) of diffractive features that are
optimized, i.e., N ≥ NiNo, where Ni and No represent the
space-bandwidth product of the input and output apertures, re-
spectively. In other words, Ni and No represent the size of the
desired complex-valued linear transformation A ∈ CNo×Ni that
can be all-optically performed by an optimized D2NN. For a
phase-only diffractive network, i.e., only the phase profile of each
diffractive layer is trainable, the sufficient condition becomes
N ≥ 2NiNo due to the reduced degrees of freedom within
the diffractive volume. Similar conclusions can be reached for
a diffractive network that operates under spatially incoherent
illumination: Rahman et al.26 demonstrated that a diffractive
network can be optimized to perform an arbitrary nonnegative
linear transformation of optical intensity through phase-only
diffractive processors with N ≥ 2NiNo. However, encoding
information with spatially incoherent light inherently confines
both the input and output to nonnegative values, as they are
represented by intensity patterns at the input and output
apertures of a D2NN. To process complex-valued data with
spatially incoherent light, other optical approaches were also
developed;1,27–29 however, these earlier systems are limited to one-
dimensional (1D) optical inputs and do not cover arbitrary input
and output apertures, limiting their functionality and processing
throughput. An extension of these earlier 1D input approaches
introduced the processing of 2D incoherent source arrays using
relatively bulky and demanding optical projection systems that
are hard to operate at the diffraction limit of light.30,31

Here, we demonstrate the processing of complex-valued
data with compact diffractive optical networks under spatially
incoherent illumination. We show that a spatially incoherent
diffractive network that axially spans <100 × λ can perform
any arbitrary complex-valued linear transformation on complex-
valued input data with negligible error if the number of optimiz-
able diffractive features is above a threshold dictated by the
multiplication of the input and output space-bandwidth prod-
ucts, determined by both the spatial extent and the pixel size of
the input and output apertures. To represent complex-valued
spatial information using spatially incoherent illumination, we
preprocessed the input information by mapping complex-valued
data to a real and nonnegative, optical intensity-based represen-
tation at the input field of view (FOV) of the diffractive network.
We term this mapping the “mosaicking” operation, indicating
the utilization of multiple intensity pixels at the input FOV to
represent one complex-valued input data point. Similarly, we
used a postprocessing step, which involved mapping the output
FOV intensity patterns back to the complex number domain,
which we termed the “demosaicking” operation. Through these
mosaicking/demosaicking operations, we show that a spatially
incoherent D2NN can be optimized to perform an arbitrary com-
plex-valued linear transformation between its input and output
apertures while providing optical information encryption. The
presented spatially incoherent visual information processor, with
its universality and thin form factor (<100 × λ), shows signifi-
cant promise for image encryption and computational imaging
applications under natural light.

2 Results
Figure 1(a) outlines a spatially incoherent D2NN architecture to
synthesize an arbitrary complex-valued linear transformation
(A) such that o ¼ Ai, where the input is i ∈ CNi , the target is
o ∈ CNo and A ∈ CNo×Ni . The mosaicking process involves

finding the nonnegative (optical intensity-based) representation
of each complex-valued element of i using E nonnegative val-
ues; here, E bases, ek, k ¼ 0; � � � ; E − 1 [see Fig. 1(c)], are used
for representing the intensity-based encoding of complex num-
bers. Based on this representation, the 2D input aperture of a
spatially incoherent D2NN will have ENi nonnegative (optical
intensity) values, denoted as ir ∈ RENiþ , representing the input
information under spatially incoherent illumination. The output
intensity distribution, denoted with ôr ∈ RENoþ , undergoes a
demosaicking process where a complex number is synthesized
from the intensity values of E output pixels, yielding the com-
plex output vector ô ∈ CNo such that ô ≈ Ai.

In our analyses, we used E ¼ 3, except in Fig. S5 in the
Supplementary Material, where E ¼ 4 results are shown for
comparison. We chose the basis complex numbers as
ek ¼ expðjk 2π

E Þ, k ¼ 0; � � � ; E − 1 such that the set of bases
S is closed under multiplication, and the product of any two
of the bases in the set is also a basis; for example, for E ¼ 3
we have ekel ¼ eðkþlmod 3Þ. Based on this representation of
information, with E ¼ 3 and e0, e1; e2, we can decompose any
arbitrarily selected complex-valued transformation matrix A
into E ¼ 3 matrices (A0, A1, A2) with real nonnegative entries
such that

A ¼ e0A0 þ e1A1 þ e2A2: (1)

For a given complex-valued input i ¼ e0i0 þ e1i1 þ e2i2,
where ik ∈ Rþ, the corresponding target output vector can be
written as

o ¼ Ai ¼ ðe0A0 þ e1A1 þ e2A2Þðe0i0 þ e1i1 þ e2i2Þ; (2)

o ¼ e0ðA0i0 þ A2i1 þ A1i2Þ þ e1ðA1i0 þ A0i1 þ A2i2Þ
þ e2ðA2i0 þ A1i1 þ A0i2Þ; (3)

i.e., we have

or ¼
2
4
o0
o1
o2

3
5 ¼

2
4
A0 A2 A1

A1 A0 A2

A2 A1 A0

3
5
2
4
i0
i1
i2

3
5 ¼ Arir; (4)

with a nonnegative real-valued matrix Ar

Ar ¼
2
4
A0 A2 A1

A1 A0 A2

A2 A1 A0

3
5: (5)

For E ¼ 4, where ekel ¼ eðkþlmod 4Þ and A ¼ e0A0þ
e1A1 þ e2A2 þ e3A3, a similar analysis yields

Ar ¼

2
664
A0 A2 A3 A1

A2 A0 A1 A3

A1 A3 A0 A2

A3 A1 A2 A0

3
775: (6)

Based on these equations, one can conclude that to all-opti-
cally implement an arbitrary complex-valued transformation
o ¼ Ai using a spatially incoherent D2NN, the layers of the
D2NN need to be optimized to perform an intensity linear
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Fig. 1 (a) Complex-valued universal linear transformations using spatially incoherent diffractive
optical networks. (b) Amplitude and phase of the target complex-valued linear transformation.
(c) Mosaicking and demosaicking processes. (d)–(e) Image encryption. (d) Complex-valued im-
ages are digitally encrypted (A−1), and subsequently decrypted using the diffractive system that
performs A (diffractive key). (e) The encryption is performed through the spatially incoherent
diffractive network (diffractive lock), and the decryption is performed digitally (digital key).
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transformation Ar ∈ RE2NiNoþ such that or ¼ Arir. The entire
system, upon convergence, performs the predefined complex-
valued linear transformation A on any given input data using
spatially incoherent light, based on Eqs. (2) and (4). In the
following sections, we numerically explore the number of opti-
mizable diffractive features (N) needed for accurate approxima-
tion of A using a spatially incoherent D2NN.

2.1 Complex-Valued Linear Transformations through
Spatially Incoherent Diffractive Networks

We numerically demonstrated the capabilities of diffractive
optical processors to universally perform any arbitrarily chosen
complex-valued linear transformation with spatially incoherent
light. Throughout the paper, we used Ni ¼ No ¼ 16. To visu-
ally represent the data, we rearranged the 16-element vectors
into 4 × 4 arrays of complex numbers, hereafter referred to as
the “complex image.”We arbitrarily selected a desired complex-
valued transformation, A ∈ C16×16, as shown in Fig. 1(b).

To explore the number of diffractive features needed, we
trained nine models with varying values of N and evaluated
the mean-squared-error (MSE) between the numerically mea-
sured (Âr) and the target all-optical linear transformation,
Ar (see Fig. 2). Our results, summarized in Fig. 2, highlight that
with a sufficient number of optimizable diffractive features, i.e.,
N ≥ 2E2NiNo ¼ 2Ni;rNo;r, our system achieves a negligible
approximation error with respect to the target Ar ∈ R48×48þ . In
Fig. 2(c), we also visualize the resulting all-optical intensity
transformation Âr compared to the ground truth Ar. In essence,
this comparison reveals the spatially varying incoherent point
spread functions (PSFs) of our diffractive system optimized us-
ing deep learning; a negligible MSE between Âr and Ar shows
that the resulting spatially varying incoherent PSFs match the
target set of PSFs dictated by Ar.

We also evaluated the numerical accuracy of our complex-
valued transformation in an end-to-end manner, as illustrated
in Fig. 2(d). For this numerical test, we sequentially set each
entry of i to e0, evaluated the corresponding complex output
ô, and stacked them to form Â0, where the subscript represents
that the measurement was evaluated using the complex impulse
along the basis e0 as input. Then, we repeated this process for
the other two bases to obtain Â1 and Â2, and stacked these
matrices as a block matrix ½Â0jÂ1jÂ2�, shown in Fig. 2(d).
Each row of the images ampðôÞ and phaseðôÞ in Fig. 2(d)
represents one of these complex output vectors, while the
corresponding target vectors are presented in the same figure
through ampðoÞ and phaseðoÞ. The small magnitude of the error
ε ¼ jô − oj2 shown in Fig. 2(d) illustrates the success of this
spatially incoherent D2NN model in accurately approximating
the complex-valued linear transformation o ¼ Ai, implemented
for an arbitrarily selected A.

2.2 Complex Number-based Image Encryption Using
Spatially Incoherent Diffractive Networks

In this section, we demonstrate a complex number-based image
encryption–decryption scheme using a spatially incoherent
D2NN. In the first scheme, shown in Fig. 1(d), the message
is encoded into a complex image, employing either amplitude
and phase encoding or real and imaginary part encoding. Then,
a digital lock encrypts the image by applying a linear transfor-
mation (A−1) to conceal the original message within the image.

At the optical receiver, the encrypted message is deciphered by
an optimized incoherent D2NN that all-optically implements the
inverse transformation A. In an alternative scheme, as depicted
in Fig. 1(e), the key and lock are switched, i.e., the spatially
incoherent D2NN is used to encrypt the message with a
complex-valued A while the decryption step involves the digital
inversion using A−1.

For our analysis, we used the letters “U,” “C,” “L,” and “A”
as sample messages. “U” and “C” are used in amplitude-phase-
based encoding (Fig. 3), whereas “L” and “A” are used for
real-imaginary-based encoding of information (Fig. S1 in the
Supplementary Material), forming complex-number-based im-
ages. To accurately model the spatially incoherent propagation26

of light through the D2NN, we averaged the output intensities
over a large number of Nφ ¼ 20,000 of randomly generated 2D
phase profiles at the input (see Sec. 4 for details).

In Fig. 3(a), we show the results corresponding to digital
encryption and optical diffractive decryption, i.e., the system
shown in Fig. 1(d). The digitally encrypted complex informa-
tion i ¼ A−1o, and its intensity representation ir, are shown
in Fig. 3(a). The optically decrypted output ô (through the spa-
tially incoherent D2NN) and its intensity-based representation
ôr are shown in the same Fig. 3(a), together with the resulting
error maps, i.e., jô − oj2 and jôr − orj2, which reveal a very
small degree of error. This agreement of the recovered and
the ground-truth messages in both the intensity and complex-
valued domains confirms the accuracy of the diffractive decryp-
tion process through an optimized spatially incoherent D2NN.
Figure 3(b) shows the successful performance of the sister
scheme [Fig. 1(e)], which involves diffractive encryption
through a spatially incoherent D2NN and digital decryption, also
revealing a negligible amount of error in both jA−1ô − ij2 and
jôr − orj2. As reported in Fig. S1 in the Supplementary Material,
we also conducted a numerical experiment using the letters “L”
and “A,” encoded using the real and imaginary parts of the
message. The visualizations are arranged the same way as in
Fig. 3, where for both schemes depicted in Figs. 1(d) and 1(e),
the degree of error between the recovered and the original
messages is negligible, affirming the success of using the real
and imaginary part-based encoding method. For the assessment
of the approximation errors when the number of diffractive
features is smaller, we compared the decryption performance
of three models with different numbers of diffractive features/
neurons, i.e., N ¼ ð0.5; 0.7; 2Þ × 2E2NiNo, for the same setup
outlined in Fig. S1(a) in the Supplementary Material. The results
are summarized in Fig. S2 in the Supplementary Material: for
models with N < 2E2NiNo, the decryption quality is compro-
mised, exhibiting a pixel absolute error of >0.1. However, this
error reduces to <0.05 for N ¼ 4E2NiNo where the decrypted
images display significantly enhanced contrast and reduced
noise levels.

To further evaluate the efficacy of our encryption method, we
analyzed the complex image entropy, examining both the real
and imaginary components separately (refer to the Sec. 4 for
details). The original image i, D2NN encrypted output ô, and
the digitally encrypted output Ai, along with the corresponding
image entropies, are shown in Fig. S3(a) in the Supplementary
Material for two complex image examples. We repeated this
analysis for a set of 1000 complex images with the resulting
entropy distributions reported in Fig. S3(b) in the Supplementary
Material. These results demonstrate that the entropy of the en-
crypted images is statistically higher than that of the original
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images. This increase in entropy signifies a heightened level of
randomness within the encrypted images, thereby validating the
effectiveness of our encryption process. In addition, the entropy
distributions of the D2NN encrypted images show excellent
agreement with the digitally encrypted corresponding images,
further demonstrating the success of our spatially incoherent
optical encryption scheme.

2.3 Different Mosaicking and Demosaicking Schemes in
a Spatially Incoherent D2NN

How we assign each element in the vector ir and or to the pixels
at the input and output FOVs of the diffractive network does not
affect the final accuracy of the image/message reconstruction.
For example, we can arrange the FOVs in such a manner that

Fig. 2 Performance of spatially incoherent diffractive networks on arbitrary complex-valued linear
transformations. (a) The all-optical linear transformation error as a function of the number of
diffractive features (N). The red dot represents the design corresponding to the results shown
in (b)–(d). (b) The phase profiles of the K ¼ 4 diffractive layers of the optimized model
(N ¼ 2 × 2Ni ;rNo;r ). (c) Evaluation of the resulting all-optical intensity transformation, i.e., the spa-
tially varying PSFs. (d) The complex linear transformation evaluation. For εr and ε, j·j2 represents
an element-wise operation.
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the components ir;k corresponding to a basis ek are assigned to
the neighboring pixels, in two adjacent rows, as shown in Fig.
S4(a) in the Supplementary Material; in an alternative imple-
mentation, the assignment/mapping can be completely arbitrary,
which is equivalent to applying a random permutation operation
on the input and output vectors (see Sec. 4). When compared to
each other, these two approaches of mosaicking and demosaick-
ing schemes show negligible differences in the error of the final
reconstruction of the letters “U,” “C,” “L,” and “A” as shown in
Fig. S4(b) in the Supplementary Material. These results under-
score that the specific arrangement of the mosaicking/demo-
saicking schemes at the input and output FOVs does not
impact the performance of the incoherent D2NN system.

3 Discussion and Conclusion
In this article, we employed a data-free PSF-based D2NN
optimization method (see Sec. 4),26 since we can determine

the nonnegative intensity transformation Ar from the target
complex-valued transformation A based on the mosaicking and
demosaicking schemes; the columns of Ar represent the desired
spatially varying PSFs of the D2NN. The advantage of this data-
free learning-based D2NN optimization approach is that compu-
tationally demanding simulation of wave propagation with large
Nφ is not required during the training. Coherent propagation is
appropriate for simulating the spatially varying PSFs, point by
point, since a point emitter at the input aperture coherently in-
terferes with itself during optical diffraction within a D2NN;
this approach makes the training time much shorter. On the
other hand, this approach necessitates prior knowledge of Ar,
which might not always be available, e.g., for tasks such as
data classification. An alternative to this data-free PSF-based
optimization approach is to train the diffractive network in an
end-to-end manner, using a data-driven direct training approach.26

This strategy advances by minimizing the differences between
the outputs and the targets on a large number of randomly

Fig. 3 Image encryption with the letters “U” and “C” encoded into amplitude and phase, respec-
tively, of the complex-valued image. (a) The input, target, output, and the approximatn error, both
in complex and real nonnegative (intensity) domains. The original information is represented by o,
while i is obtained by digital encrypting o following Fig. 1(d). (b) The input, output (resulting
from optical encryption), and digitally decrypted output and the error between the input and
the decrypted output. The result of digital decryption matches the input information. The second
row shows the corresponding input, target, and output intensities and the approximation error. j · j2
represents an element-wise operation.
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generated examples, thereby learning the spatially varying PSFs
implicitly from numerous input-target intensity patterns corre-
sponding to the desired task – instead of learning from an
explicitly predetermined Ar. This direct approach, however,
requires a longer training time, necessitating the simulation
of incoherent propagation for each training sample on a large
data set.

In our presented approach, the choice of E is not restricted to
E ¼ 3, as we have used throughout the main text. As another
example of encoding, we show the image encryption results
with E ¼ 4 in Fig. S5 in the Supplementary Material, where
the four bases are expð j π

2
kÞðk ¼ 0,1; 2,3Þ. The reconstructed

“U,” “C,” “L,” and “A” letters are also reported in the same
figure, confirming that given sufficient degrees of freedom (with
N ≥ 2E2NiNo), the linear transformation performances are
similar to each other. However, compared to E ¼ 3, this choice
of E ¼ 4 necessitates 4/3 times more pixels on both the diffrac-
tive network input and output FOVs—reducing the throughput
(or spatial density) of complex-valued linear transformations
that can be performed using a spatially incoherent D2NN.
Accordingly, more diffractive features and a larger number of
independent degrees of freedom (by 16/9-fold) are required
within theD2NN volume to achieve an output performance level
that is comparable to a design with E ¼ 3. Note that while
E ≥ 3 is sufficient to reconstruct the original complex-valued
images regardless of the image complexity, the redundancy pro-
vided by larger E values might offer increased resilience against
noise at the cost of reducing the image-processing throughput
(per input aperture area) with larger E.

Our framework offers several flexibilities in implementation,
which could be useful for different applications. First, the
flexibility to arbitrarily permute the input and the output pixels
following different mosaicking and demosaicking schemes
(as introduced earlier in Sec. 2) could enhance the security of
optical information transmission. A user would not be able to
either spam or hack valuable information that is transferred
optically without specific knowledge of the mosaicking and de-
mosaicking schemes, thus ensuring the security of this scheme.
Note that this enhancement in security is achieved without add-
ing complexity to the system by just permuting the assignment
of data elements to the pixels of the input and output devices,
e.g., spatial light modulators (SLMs) and complementary metal-
oxide-semiconductor (CMOS) detector-arrays. Second, the flex-
ibility in choosing E, as discussed above, could be useful in
adding an extra layer of security against unauthorized access,
albeit with a trade-off in system throughput that comes with
larger E. Furthermore, we can use different sets of bases for
mosaicking and demosaicking operations by applying offset
phase angles θi and θo, respectively, to the original bases
ek ¼ expðjk 2π

E Þ, k ¼ 0; � � � ; E − 1. This will result in a set of
modified/encrypted bases: ek;i ¼ exp½jðk 2π

E þ θiÞ� for mosaick-
ing and ek;o ¼ exp½jðk 2π

E þ θoÞ� for demosaicking. This power-
ful flexibility in representation further enhances the security of
the system.

Regarding image encryption-related applications, we demon-
strated two approaches [Figs. 1(d) and 1(e)] to utilizeD2NNs for
encryption or decryption. However, it is also possible to deploy
a pair of diffractive systems in tandem, with one undertaking the
matrix operation A for encryption and the other undertaking the
inverse operation A−1 for decryption. Furthermore, potential ex-
tensions of our work could explore a harmonized integration of

polarization state controls32 and wavelength multiplexing33 to
build a multifaceted, fortified encryption platform. In addition
to increasing the data throughput, these additional degrees
of freedom enabled by different illumination wavelengths and
polarization states would further enhance the security of a
diffractive processor-based system.

In this work, we focused on the numerical analysis of the
presented concept. However, we should note that various D2NNs
designed using deep-learning-based approaches have been exper-
imentally validated over different parts of the electromagnetic
spectrum, e.g., from terahertz (THz)9,14 to near-infrared (NIR)15

and visible wavelengths,24 showing a good agreement between
the numerical and experimental results. To address some of the
experimental challenges associated with fabrication errors and
mechanical misalignments, a “vaccination” strategy34,35 has been
devised. This approach enhances the robustness of the diffrac-
tive optical designs by incorporating such aberrations/imperfec-
tions as random variables during the training phase, thereby
preparing the system to better withstand and adapt to the uncer-
tainties inherent in real-world experimental conditions.

Although spatially coherent light is more suitable for complex-
valued information processing in laboratory settings, the use of
spatially incoherent light offers various practical advantages. For
example, speckle noise, which is inevitable in coherent systems,
can be suppressed by using partially or fully incoherent illumi-
nation. An additional benefit of spatially incoherent designs is
the range of viable illumination sources that can be used: instead
of using specialized coherent sources, a spatially incoherent
system can work with standard light-emitting diodes (LEDs),
or even under natural light, which is important for some appli-
cations of diffractive information processing.

To conclude, we demonstrated the capability of spatially
incoherent diffractive networks to perform arbitrary complex-
valued linear transformations. By incorporating various forms
of mosaicking and demosaicking operations, we paved the way
for a wider array of applications by leveraging incoherent
D2NNs for complex-valued data processing. We also showcased
potential applications of these spatially incoherent D2NNs for
complex number-based image encryption or decryption, high-
lighting the security benefits arising from the system’s flexibil-
ity. Our exploration marks a significant stride toward enhanced
versatility and robustness in optical information processing
with spatially incoherent diffractive systems that can work under
natural light.

4 Appendix: Methods

4.1 Linear Transformation Matrix

In this paper, we use Ni ¼ No ¼ 16 so that A ∈ C16×16; see
Fig. 1(b). To generate A, we randomly sample the amplitude
of each element from the uniform distribution Uniformð0, 1Þ
and the phases from Uniformð0, 2πÞ. For the encryption appli-
cation, to ensure that the result of inversion is not sensitive to
small errors, we performed QR-factorization on A to obtain a
condition number of one.36

4.2 Real-Valued Nonnegative Representation of
Complex Numbers

Following Eq. (4), the complex-valued input and target vectors
i ∈ CNi and o ∈ CNo are represented by the corresponding real
and nonnegative intensity vectors ir ¼ ½ iT0 � � � iTE−1 �T ∈ RENiþ
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and or ¼ ½ oT0 � � � oTE−1 �T ∈ RENoþ , where i ¼ P
E−1
k¼0 ekik

and o ¼ P
E−1
k¼0 ekok. The desired all-optical intensity transfor-

mation Ar between ir and or is derived from the target com-
plex-valued linear transformation A following Eqs. (1) and
(5). We should note that deriving Ar from A requires mapping
each complex element a to its real and nonnegative representa-
tion ða0; � � � ; aE−1Þ based on the E ≥ 3 complex bases ek such
that a ¼ P

E−1
k¼0 ekak. To define a unique mapping, we follow

an algorithm29 by imposing additional constraints: ak ¼ 0 if
2π
E ≤ phaseðeka�Þ ≤ 2π − 2π

E , i.e., ak ¼ 0 if the angle between
a and ek is greater than

2π
E ; here a

� represents the complex con-
jugate of a. The same constraints were also used while mapping
the complex input vectors i to the real and nonnegative intensity
vectors ir.

4.3 Mosaicking and Demosaicking Schemes

For mosaicking (demosaicking) assignment of each element of
ir (or) to one of the Ni;r ¼ ENi (No;r ¼ ENo) pixels of the 2D
input (output), the arrangement of the FOV can be regular,
e.g., in a row-major order as shown in Fig. S4(a) in the
Supplementary Material, “Regular mosaicking.” Alternatively,
the pixel assignment on the input (output) FOV can follow any
arbitrary mapping which can be defined by a permutation matrix
Pi (Po) operating on the input (output) vector; see Fig. S4(a) in
the Supplementary Material, “Arbitrary mosaicking.” For
such cases, when ordered in a row-major format, intensities
on the input (output) FOVs ir (or) can be written as ir ¼
Pi½ iT0 � � � iTE−1 �T (or ¼ Po½ oT0 � � � oTE−1 �T). Accordingly,
such an arbitrary arrangement of pixels was accounted for by
redefining the all-optical intensity transformation as PoArPT

i .

4.4 Spatially Incoherent Light Propagation through
a D2NN

The 1D vector ir is rearranged as a 2D distribution of intensity
Iðx; yÞ at the input FOV of the D2NN. To numerically model
the spatially incoherent propagation of the input intensity dis-
tribution Iðx; yÞ through the D2NN, we coherently propagated
the optical field

ffiffi
I

p
expðjφÞ through the trainable diffractive

surfaces to the output plane, where φ is a random 2D phase
distribution, i.e., φðx; yÞ ∼ Uniformð0; 2πÞ for all ðx; yÞ. If
we denote the coherent field propagation operator as Df·g
(see Sec. 4.5), then the instantaneous output intensity is
jDf ffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðx; yÞp
exp½jφðx; yÞ�gj2 and the time-averaged output in-

tensity Oðx; yÞ for spatially incoherent light can be written as

Oðx; yÞ ¼ ���D� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
exp

�
jφðx; yÞ���2�: (7)

The average output intensity can be approximately calculated
by repeating the coherent wave propagation Df·g Nφ-times,
each time with a different random phase distribution φrðx; yÞ,
and averaging the resulting Nφ output intensities,

Oðx; yÞ ¼ lim
Nφ→∞

1

Nφ

XNφ

r¼1

��D� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
exp½jφrðx; yÞ�

	��2: (8)

We used Nφ ¼ 20,000 for estimating the incoherent output
intensity Oðx; yÞ corresponding to any arbitrary input intensity
Iðx; yÞ. Note that when only one pixel at the input aperture is

activated, with all other input pixels being inactive with zero
intensity, as is the case while evaluating spatially varying
PSFs, the application of Eq. (8) becomes redundant, although
one could still use it. In this scenario, all the light diffracted from
a single point source is mutually coherent. Consequently, for the
purposes of evaluating the spatially varying PSFs of the system,
as elaborated later in Sec. 4.7, employing a coherent propaga-
tion model for each point emitter at the input aperture is accurate
and provides a faster solution.

4.5 Coherent Propagation of Optical Fields: Df·g
The propagation of spatially coherent light patterns through
a diffractive processor, denoted by Df·g, involves a series of
interactions with consecutive diffractive surfaces, interleaved
by wave propagation through the free space separating these
surfaces. We assume that these modulations are introduced by
phase-only diffractive surfaces, i.e., the field amplitude remains
unchanged during the light–matter interaction. Specifically, we
assume that a diffractive surface alters the incident optical field,
symbolized as uðx; yÞ, in a localized manner according to the op-
timized phase values ϕMðx; yÞ of the diffractive features, resulting
in the phase-modulated field uðx; yÞ exp½jφMðx; yÞ�. The diffrac-
tive surfaces are coupled by free-space propagation, allowing
the light to travel from one surface to the next. We used the an-
gular spectrum method to simulate the free-space propagation,37

uðx; y; z ¼ z0 þ dÞ ¼ F−1fFfuðx; y; z ¼ z0Þg ×Hðfx; fy; dÞg;
(9)

where Ff·g is the 2D Fourier transform and F−1f·g is its in-
verse operation. Hðfx; fy; dÞ is the free-space transfer function
corresponding to propagation distance d. For wavelength λ,

Hðfx; fy; dÞ

¼
8<
:

exp
h
j 2π

λ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλfxÞ2 − ðλfyÞ2

q i
; f2x þ f2y < 1∕λ2

0; otherwise
:

(10)

The fields were discretized with a lateral sampling interval
of δ ≈ 0.53λ to accommodate all the propagating modes and
sufficiently zero-padded to remove aliasing artifacts.38

4.6 Diffractive Network Architecture

Wemodeled the diffractive surfaces by their laterally discretized
heights h, which correspond to phase delays φM ¼ 2π

λ ðn − 1Þh,
where n is the refractive index of the material. The connectivity
between consecutive diffractive layers9 was kept equal across
the diffractive designs with varying N by setting the separation
between the layers as d ¼ Wδ

λ , where the width of each diffrac-

tive layer is W ¼
ffiffiffi
N
K

q
δ. Here, K is the number of diffractive

layers; we used K ¼ 4 throughout the paper.

4.7 Training and Evaluation of Spatially Incoherent
Diffractive Processors

For performing an arbitrary complex-valued linear transfor-
mation with a diffractive processor, we used the PSF-based
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data-free design approach, where the diffractive features were
optimized so that the all-optical intensity transformation of
the diffractive processor achieves Âr ≈ Ar. To evaluate Âr, we
used ENi intensity vectors fir;tgENi

t¼1 , where ir;t½l� ¼ 1 if l ¼ t and
0 otherwise. In other words, fir;tgENi

t¼1 are unit impulses, located
at different input pixels. We simulated the all-optical output
intensity vectors fo0r;tgENi

t¼1 corresponding to these unit impulses
and stacked them, i.e.,

Â0
r ¼ ½o0r;1jo0r;2j � � � jo0r;ENi

�: (11)

Finally, we compensated for the optical diffraction efficiency-
related scale mismatch through multiplication by a scalar, i.e.,

Âr ¼ σÂ0
r; (12)

where σ was defined as

σ ¼
PENi

n¼1

PENo
m¼1 Ar½m; n�Â0

r½m; n�PENi
n¼1

PENo
m¼1 ðÂ0

r½m; n�Þ2 : (13)

The MSE loss function to be minimized was defined as

LPSF ¼
1

NiNo

XENi

n¼1

XENo

m¼1

ðAr½m; n� − Âr½m; n�Þ2: (14)

The height h of the diffractive features at each layer was
constrained between zero and a maximum value hmax by em-
ploying a latent variable hlatent. The relationship between the
constrained height h and the latent variable hmax was defined as
h ¼ hmax

2
× ½sinðhlatentÞ þ 1�, where we chose hmax ≈ λ

n−1, which
corresponds to a differential phase modulation of 2π. The latent
variables were initialized randomly from the standard normal
distribution N ð0,1Þ.

The optimization of the diffractive layers was carried out
using the AdamWoptimizer39 for 12,000 iterations, with an ini-
tial learning rate of 10−3. The model state corresponding to the
minimum of the MSEs evaluated after every 400 iterations was
selected for the final evaluation. The D2NN models were imple-
mented and trained using PyTorch (v1.12.1)40 with Compute
Unified Device Architecture (CUDA) version 12.2. Training
and testing were done on GeForce RTX 3090 graphics process-
ing units (GPUs) in workstations with 256 GB of random-access
memory (RAM) and Intel Core i9 central processing unit
(CPU). The training time of the models varied with the size of
the models. For example, the model used in Figs. 2(b) and 2(c)
took around 1 h for 12,000 iterations. Inference for each input
vector with Nφ ¼ 20,000 takes around 30 s.

To visualize the all-optical transformation error in Fig. 2,
we used the error matrix εr ¼ ðAr − ÂrÞ2; here ð·Þ2 denotes an
element-wise operation. To evaluate the error ε at complex
linear transformation, we applied demosaicking to the columns
of Âr to form the block matrix ½Â0j � � � j ˆAE−1� ∈ CNo×ENi . Here,
the subscript k represents that Âk is measured by applying the
columns of ekI as input and stacking the corresponding demo-
saicked (complex-valued) output vectors. Accordingly, we have

ε ¼ j½e0A − Â0j � � � jeE−1A − ˆAE−1�j2: (15)

Here, j·j2 represents an element-wise operation.

4.8 Entropy Evaluation

For the evaluation of the image encryption strength, we com-
puted the entropy separately for the real and imaginary parts of
a complex image as follows:

HRe∕ImðxÞ ¼ −X
i

pRe∕Im
i · logðpRe∕Im

i Þ; (16)

where we calculated the distribution of either the real or imagi-
nary part (denoted by the superscript) over the pixels of x; here
x denotes the complex image. pi is the probability (normalized
histogram count) for a certain pixel value i.

For the histograms presented in Fig. S3(b) in the
Supplementary Material, the data set is adapted from the
Extended MNIST (EMNIST).41 For the creation of the input
complex images, we randomly selected two distinct images
from the EMNIST data set, using one as the real part and
the other as the imaginary part of the complex image. To ensure
compatibility with the input dimensionality, these images were
bilinearly downsampled to a resolution of 4 × 4 pixels. We ran-
domly formed a set of 1000 such complex images to compile
the histograms presented in Fig. S3(b) in the Supplementary
Material.

Code and Data Availability
The data and methods required to assess the conclusions drawn
in this study are included within the main text and supplemen-
tary information files. The optimization of machine-learning
models used in this research was conducted using the publicly
available PyTorch library. Additional data can be requested from
the corresponding author.
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