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Abstract. Photoacoustic imaging using a focused, scanning detector in combination with a pulsed light source is
a common technique to visualize light-absorbing structures in biological tissue. In the acoustic resolution mode,
where the imaging resolution is given by the properties of the transducer, there are various challenges related to
the choice of sensors and the optimization of the illumination. These are addressed by linking a Monte Carlo
simulation of energy deposition to a time-domain model of acoustic propagation and detection. In this model,
the spatial and electrical impulse responses of the focused transducer are combined with a model of acoustic
attenuation in a single response matrix, which is used to calculate detector signals from a volumetric distribution
of absorbed energy density. Using the radial symmetry of the detector, the calculation yields a single signal in
less than a second on a standard personal computer. Various simulation results are shown, comparing different
illumination geometries and demonstrating spectral imaging. Finally, simulation results and experimental images
of an optically characterized phantom are compared, validating the accuracy of the model. The proposedmethod
will facilitate the design of photoacoustic imaging devices and will be used as an accurate forward model for
iterative reconstruction techniques. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Photoacoustic microscopy (PAM) is a well-established method
for generating images of biological tissue containing structures
with optical absorption contrast. In the acoustic resolution
mode, where the lateral resolution is given by the focusing prop-
erties of an ultrasound transducer that scans across the tissue
surface, an imaging depth of several millimeters has been
observed.1 High repetition-rate pulsed laser systems and fast
scanning devices allow short image acquisition times, despite
the necessity for moving the transducer point by point over
the tissue surface. In this study, we use the term PAM to describe
a method where a scanning, focused detector receives signals
from sources along its line of sight, and the acquired signals
(A-scans) are combined to a two- or three-dimensional (2-D
or 3-D) image. This includes scenarios for which sometimes
also the terms “mesoscopy” or “macroscopy” are used to indi-
cate that the observed objects may actually not be in the microm-
eter-range but can reach sizes on the order of millimeters.2,3

By contrast, optical resolution PAM can image submicrometer
structures within a depth of ∼1 mm, only relying on the optical
focusing of the illuminating lens.4

Accurate modeling is essential in the design of a PAM sys-
tem for a specific application. By employing a realistic imaging
model, factors such as illumination geometry and various trans-
ducer properties can be optimized. “Realistic” means that as
many factors as possible, which play a role in the formation of

an image, are taken into account. Specifically, the problem that
acoustic and optical paths have to be separated in a PAM device
can be addressed in a model that includes both, the optical illu-
mination and the acoustic detection processes. The optical part
has to provide accurate predictions of the energy deposition map
for spatially heterogeneous distributions of optical properties in
the object and for various illumination patterns on the surface
of the object. The acoustical part should model the generation,
propagation, and detection of photoacoustically generated
acoustic waves. This includes acoustic damping effects and the
integration of the waves over the finite area of an ultrasound
detector.

Concerning the optical illumination in PAM, the method of
choice for modeling light transport in biological tissue is the
Monte Carlo (MC) simulation.5 There are several examples
of how MC simulations have been used to optimize the light
distribution for photoacoustic imaging, for instance, for
obtaining a maximum signal from a source at a given depth6

or for optimizing dark field illumination in PAM.7 For a com-
plete modeling of the photoacoustic imaging process, results of
the MC simulation can be coupled with the acoustic generation
and propagation. Jacques8 used MC-generated energy distribu-
tion maps to simulate signals of point-like detectors. Ermilov
et al.9 used MC results to model signals received by an array
of flat, finite-sized detector elements.

A well-established method for simulating the signal genera-
tion in photoacoustic imaging is the k-wave toolbox for
MATLAB.10 It can model acoustic wave generation from an
arbitrary distribution of absorbed energy density and is able
to take into account heterogeneous distributions of sound
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speed. MC simulations combined with k-wave were used by
Kaplan et al.11 for quantitative photoacoustic imaging or by
Heijblom et al.12 to improve interpretation of clinical photo-
acoustic images. Additionally, k-wave has been used to model
PAM with optical resolution, recording acoustic waves by
a point-like transducer that scans across an object.13,14 The pseu-
dospectral method computes the evolution of the sound field in
the entire source volume at a series of time steps. Multiple detec-
tor positions can be defined within the computational grid, at
which the temporal pressure signals are recorded. This feature
also allows simulating an extended detector surface by summing
point detector signals; however, 3-D simulations with the
k-wave toolbox are quite time consuming. For instance, a single
time step in a computational grid with a size of 2563 voxels

requires about one second on the CPU of a multicore desktop
computer.10 Moreover, in the simulation of PAM with acoustic
resolution (AR-PAM) the volume containing the photoacoustic
sources and the focusing detector are separated by a distance
equal to the acoustic focal length. If both have to be modeled
with sufficiently fine computational grids to resolve acoustic
frequencies in the MHz range, the computational domain in
the k-wave simulation would become impractically large.

An alternative is time-domain modeling of acoustic propaga-
tion and detection, using the spatial impulse response (SIR),
which describes the temporal spreading of an acoustic wave
from a point source over the detector surface. Various imple-
mentations of the SIR have been used to improve reconstruc-
tions in photoacoustic tomographic imaging.15,16 In PAM,
Araque et al.17 demonstrated an improved depth of field, if a
model-based reconstruction applied to line-scanning detector
data used the SIR of a focused detector. The SIR was used
by Karmakar et al.18 to simulate the response of a focused detec-
tor to a distribution of point-like acoustic sources. The concept
of the SIR is also widely applied in simulations of pulse-echo
ultrasound imaging, where it is implemented in the FIELD II
software.19,20 The amount of data contained in the SIR can be
huge. For an arbitrary shape of the detection surface, the signal
from every point within the volume containing the acoustic
sources can be different. If precomputed SIR data are stored
in a system matrix, the required storage can, therefore, become
very large.

As the SIR concept is well suited to model acoustic wave
generation and detection in AR-PAM, we developed a simula-
tion method that avoids large storage requirements by taking
advantage of the radial symmetry of focusing sensors.
Furthermore, the computation time for a single acoustic signal
on the CPU of a standard PC is shown to be less than a second
even if it involves integration over 2563 grid points of the MC-
simulated energy density map. The model also includes a power
law acoustic attenuation and the finite bandwidth of the detector.

In the following sections, we start with a short description of
the required specifications for the light transport model. Then,
we proceed with an accurate explanation of the acoustic part of
the model, including the calculation of the sensor SIR, the incor-
poration of acoustic damping and detector bandwidth, and the
scanning of the detector. Simulation results are then presented,
where we compare dark field and bright field illumination tech-
niques in combination with focusing sensors. A second set of
simulations demonstrates spectrally resolved PAM of blood
vessels with different oxygenation levels. Finally, we show a
comparison between simulation and experiment, using a ring-
shaped sensor that provides a large depth of field.

2 Methods

2.1 Monte Carlo Simulation of Light Transport

The simulation of sound waves generated by short laser pulses
via the photoacoustic effect in biological tissue requires
the knowledge of a distribution of absorbed energy density W,
which is given by the fluence Ψ and the absorption coefficient
μa. From the energy density distribution, the initial pressure p0

is derived by multiplication with the Gruneisen parameter Γ

EQ-TARGET;temp:intralink-;e001;326;647p0ðrÞ ¼ ΓðrÞWðrÞ ¼ ΓðrÞμaðrÞΨðrÞ: (1)

An MC simulation for optically heterogeneous media that
models light and deposited energy distributions in biological tis-
sue has been developed by Jacques et al.8,21 The 3-D simulation
assigns values of μa, the scattering coefficient μs, and of the
scattering anisotropy g to each voxel in a volumetric Cartesian
grid. The wavelength-dependent values of the optical properties
are specific for different types of tissues.22 As the MC simula-
tion is a standard method, it will not be described in detail here.
Only the requirements for the further simulations of photoacous-
tic signals will be specified. In particular, the distributions of W
and μa should be stored on a sufficiently fine grid, for instance
on 2563 grid points. The grid spacing determines the achievable
acoustic frequency as described in the next section. In our
simulations, we assumed Γ constant. If this is not the case,
its distribution should be stored as well. Furthermore, the laser
radiation should be delivered in a beam of finite diameter. In this
study, we used a matched boundary, where the refractive index
of the tissue and the adjacent medium are identical. This is a
good approximation for the case where an acoustically matching
material, such as water or ultrasound gel is applied to the tissue
surface for acoustic coupling to the detector.

2.2 Photoacoustic Sound Generation

First, the continuous model for photoacoustic sound generation
from a distribution of initial pressure and its reception by
a sensor with finite area is described, followed by the discrete
implementation of the model. Given a distribution of absorbed
energy densityWðrÞ, the time-dependent pressure signal pðr0; tÞ
at a detection point r0 is given by the following integral:15

EQ-TARGET;temp:intralink-;e002;326;289pðr0; tÞ ¼
β

4πCp

∂
∂t

Z
V
WðrÞ 1

jr0 − rj δ
�
t −

jr0 − rj
cs

�
d3r;

(2)

where cs is the speed of sound, β is the thermal expansion coef-
ficient, Cp is the specific heat capacity at constant pressure, and
V is the volume that contains theW-distribution. Focused detec-
tion requires a sensor with finite area, which obtains its focusing
property from a specific shape. Most common is a spherically
focused sensor, where the center of curvature determines
the focus position. Also possible are annular sensors, which
focus along the symmetry axis of the ring.3,23,24 Similar focusing
properties can be achieved with a conical sensor, which also
preferentially receives signals from its symmetry axis.25 Our
analysis will be limited to all kinds of detectors with radial sym-
metry, as only these types of detectors exhibit a focus or a focal
range suitable for scanning photoacoustic imaging. The signal
received by a sensor with finite area is calculated by integrating
the point detector signal from Eq. (2) over the sensor surface
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EQ-TARGET;temp:intralink-;e003;63;752

sðrd; tÞ ¼
Z
S0

pðr0; tÞdS0ðrdÞ

¼ β

4πCp

∂
∂t

Z
S0

Z
V
WðrÞ 1

jr0 − rj

× δ

�
t −

jr0 − rj
cs

�
d3r dS0ðrdÞ; (3)

where S0 denotes the sensor surface and rd is the position of
the center of the sensor. Separating the source W from the
sensor-dependent part of this integral yields

EQ-TARGET;temp:intralink-;e004;63;626sðrd; tÞ ¼
Z
V
WðrÞhidðrd; r; tÞd3r: (4)

The function hidðrd; r; tÞ describes the system response of the
sensor to a photoacoustic point source

EQ-TARGET;temp:intralink-;e005;63;561hidðrd; r; tÞ ¼
β

4πCp

∂
∂t

Z
S0

1

jr0 − rj δ
�
t −

jr0 − rj
cs

�
dS0ðrdÞ:

(5)

The ideal system response hidðrd; r; tÞ defined here depends
only on the position of a point in the source volume relative
to the sensor and assumes an ideal, lossless medium and a detec-
tor with uniform frequency response. To take into account the
acoustic damping and the specific electrical response of the
detector, a more general definition of the system response
can be used, where h is now a convolution of several response
functions

EQ-TARGET;temp:intralink-;e006;63;414hðrd; r; tÞ ¼ gattðrd; r; tÞ � gelðtÞ � gpaðtÞ � gsðrd; r; tÞ; (6)

where “�;” describes temporal convolution, gel is the acousto-
electrical impulse response (EIR) of the detector, gatt is the
attenuation impulse response, gs is the SIR, and gpa describes
the specific temporal signal from a photoacoustic point
source. The impulse response defined in Eq. (5) can be written
as hidðrd; r; tÞ ¼ gpaðtÞ � gsðrd; r; tÞ, where gs describes the
spreading of a delta pulse over the sensor surface and gpa is
a time derivative operator. If the laser pulse has a finite duration,
then gpa is the time derivative of the temporal pulse shape. It is
possible to derive analytical equations for the SIR in various
geometries.26 In the discrete implementation we use a numerical
calculation, which can be easily adapted for a variety of trans-
ducer types, such as flat, annular, or spherically focused.

We proceed with the discrete model of photoacoustic sound
generation and detection and start with the signal on a single
position. Scanning the detector will be described later.
Analogous to Eq. (4), the signal vector s with components
sk ≡ sðtkÞ, where tk ¼ kΔt is generated by an absorbed energy
density distribution contained in a vector W with components
Wj ≡WðrjÞ, where rj defines a point on a 3-D Cartesian grid
with spacings Δx, Δy, and Δz, and is given as

EQ-TARGET;temp:intralink-;e007;63;151sk ¼
X
j

hkjWj or s ¼ HW: (7)

Spatial and temporal increments depend on each other.
According to the sampling theorem, the minimum acoustic
wavelength generated with a grid spacing Δx (assuming Δx ¼
Δy ¼ Δz) is λmin ¼ 2Δx, leading to a maximum acoustic

frequency fmax ¼ cs∕ð2ΔxÞ. To avoid a loss of information,
the temporal increment Δt should not be larger than Δx∕cs.
The signal vector s has K components and the source distribu-
tion is defined on J discrete positions rj relative to the sensor.
The system response H with components hkj is, therefore,
a matrix of size K × J. Also, the SIR, Gs, has the same size,
whereas the discrete counterparts of gatt, gel, and gpa are the
square matrices Gatt, Gel, and Gpa of size K × K.

For the discrete, numerical calculation of the SIR, the curved
surface of the detector is first divided into surface elements
located at r0;i. The spherical wave emitted by the point source
hits different locations of the detection surface at different times.
As the SIR is a function of time, the task is to find at each spe-
cific time the number and strength of spherical waves hitting
the surface elements and summing up all these contributions.
This corresponds to the integral over the delta function in
Eq. (5). The components of Gs, gskj are given as
EQ-TARGET;temp:intralink-;e008;326;565

gskj ¼
X
i

wiqkij;

with qkij ¼
(

1
jr0;i−rjj if

��� jr0;i−rjjcs
− tk

��� ≤ Δt
2

0 otherwise
: (8)

The weight factors wi take into account the size of surface ele-
ments at r0;i. The next step is the definition of the photoacoustic
signalGpa. Commonly, a photoacoustic point source is modeled
as a solid sphere, for which the analytical signal has a typical
“N”-shape.15,27 Defining the sphere radius a ¼ Δx, where Δx is
the spatial increment of the W-distribution, gives

EQ-TARGET;temp:intralink-;e009;326;420gpakþm;k ¼
�
− cs

2a mΔt if ? − a
csΔt

≤ m ≤ a
csΔt

0 otherwise
; (9)

where m is an integer. The resulting square matrix has the struc-
ture of a Toeplitz matrix, with replications of the basic “N”-sig-
nals grouped in columns along its main diagonal. The temporal
convolution withGs is then achieved by a matrix multiplication.
It is possible to define convolution matrices Gatt and Gel sep-
arately. For instance, in some cases the EIR of the sensor is
known and can be implemented in a convolution matrix in
a similar way as the photoacoustic signal matrix Gpa was
obtained. Sometimes the detector transfer function is given or
its center frequency and a fractional bandwidth are known.
This suggests defining a suitable filter in frequency space that
can be multiplied with the Fourier transform of the photo-
acoustic response function in the columns of Gpa. The result is
a modified matrix G̃pa that now also contains the EIR. It is
important to ensure causality of the obtained filter. In other
words, the simulated sensor should not start to respond before
the actual sound wave has arrived, as it would be the case for
a noncausal filter. If the amplitude spectrum is given, the related
phase spectrum for a minimum phase causal filter can be found
by applying the Hilbert transform to the logarithm of the ampli-
tude spectrum.28

In the same way as the detector response function, also
the attenuation can be taken into account by defining a suitable
filter and applying it to the photoacoustic response function in
frequency space. The difference is that the attenuation is not a
function of frequency alone but also depends on the propagation
distance of the wave. The amplitude attenuation is usually
expressed by a power law
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EQ-TARGET;temp:intralink-;e010;63;752gattðf; jr0 − rjÞ ¼ expð−αjr0 − rjÞ with α ¼ α0fb; (10)

f is the frequency, α is the acoustic absorption coefficient, and
α0 is a constant. This kind of filter does not take into account
the dispersion of the wave and therefore leads to a noncausal
impulse response. For biological tissue b ≈ 1, for which case
a minimum phase causal filter that takes into account dispersion
was proposed by Gurumurthy28

EQ-TARGET;temp:intralink-;e011;63;664

gattðf; jr0 − rjÞ ¼ expð−α0jr0 − rjfÞ

· exp

�
i
2f
π
α0jr0 − rj ln

���� ff0
����
�
: (11)

Avalue of f0 ¼ 77 MHz was suggested in Ref. 28 [actually the
authors introduce a minimum phase delay factor τm ¼
lnð2πf0Þ ¼ 20]. Instead of this relation, any other causal
impulse response can be used, also for b ≠ 1.

For a finite size detector, the distance from a source point to
different parts of the detector surface is generally not constant; it
is, therefore, not possible to define a unique filter function. This
can be solved by an approximation, where an average distance is
used for defining the attenuation. Another possibility is nonsta-
tionary filtering, where the filter function changes as a function
of time.29 Its implementation is straightforward as every column
of Gpa corresponds to a certain time of flight t ¼ jr0 − rj∕cs.
Substituting jr0 − rj by cs t in Eq. (11) gives a slightly different
filter for each column in the Fourier transformed matrixGpa and
consequently different kernels in each of its columns after
inverse Fourier transform. This results in a final, modified
photoacoustic response matrix G̃pa that leads to a nonstationary
convolution when it is multiplied with Gs. An alternative to the
structure of this convolution matrix is “nonstationary combina-
tion,” as it was suggested by Margrave29 and used by Treeby for
building a convolution matrix that compensates attenuation in
a photoacoustic imaging reconstruction algorithm.30 In this
case, the filter kernel for a given time and thus propagation dis-
tance is written in the row of the filter matrix, therefore describ-
ing a filter that changes as a function of the filter output time and
can take into account abrupt changes of the filter characteristics.

Due to the radial symmetry of the sensor, it is convenient to use
cylindrical coordinates for the calculation of the SIR (see Fig. 1),
which, therefore, becomes a function gs½ρðrd; rÞ; ζðrd; rÞ; t�. As
the MC simulation usually gives a W-distribution in Cartesian
coordinates, there are two possibilities to implement the summa-
tion in Eq. (7). Either the summation goes over the Cartesian
grid, after calculating the position ðρ; ζÞ of each grid point rel-
ative to the detector. This results in a relatively slow summation
over the source volume. The second option is an interpolation of
the W-distribution into cylindrical coordinates ðρ;ϕ; ζÞ, fol-
lowed by an integration over ϕ. While the detector is scanned,
the origin of the cylindrical coordinate system, rd, moves rela-
tive to W. The summation in Eq. (7) is then performed over the
two remaining coordinates ρ and ζ, respectively. As indicated
above, this is done by multiplying the system response matrix
with the vector containing the source distribution. Overall, in
our implementation in MATLAB (R2015b) on a standard PC
(quad-core 3.2GHz CPU), the second option resulted in
about 50 times faster computation compared with the first
one. With this acceleration, the calculation of a single A-scan
signal took about 0.5 s.

2.3 Scanning the Detector

The next step is the simulation of B-scan images. With the pre-
computed SIR of the sensor, the time required to calculate a 2-D
B-scan consisting of 100 A-scans from a volume containing
2563 entries of absorbed energy density is about one minute.
However, this assumes that the energy density distribution is
also precomputed and does not need to be repeatedly calculated
during the simulation.

This assumption is used in the first described method: the
illumination of the sample remains static while the focused sen-
sor moves relative to the constant W-distribution. An imaging
scenario, where such an arrangement of illumination and
detection would be applicable, is PAM in the transmission
mode. An object is illuminated with laser pulses from one side
and a focused sensor scans the surface of the object from the
other side, recording acoustic waves that have propagated in
the direction of the incoming light.2

In many imaging scenarios, however, illumination and col-
lection of acoustic signals have to take place on the same side of
the object (“reflection mode”). In this case, the illumination of
the object generally moves with the sensor and does not stay
constant. This leads to the second method, where at each new
sensor position a new MC simulation has to be run. An example
is acoustic resolution photoacoustic microscopy (AR-PAM)
with dark field illumination, where special optics creates a ring-
shaped illumination pattern around the ultrasound sensor.1 In
addition to bypassing the optically opaque piezoelectric sensor,
this kind of illumination also diminishes the strong signal gen-
erated at the surface. Another example is AR-PAM with bright
field illumination through a hole in the center of a focusing
detector.31 This method accepts some disturbance due to the
strong surface signal but benefits from a much simpler design
of the illumination optics. To study the differences between
these illumination modes, the influence of the light distribution
moving with the sensor cannot be neglected. If the MC simu-
lation is the computational bottleneck, calculation of a new
energy density map at each scanning position will drastically

r

z

PA point 
source

x

y

r0

r

rd

z

Detector

Volume containing
the W-distribution

Fig. 1 Arrangement of detector and absorbed energy density distri-
bution as it is used to calculate the detector SIR. The energy density is
given in Cartesian coordinates ðx; y; zÞ.The detector is defined in
a cylindrical coordinate system ðρ; ζÞ with its origin at rd . Spherical
acoustic waves generated at points r are received by points r0 on
the detector surface.
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increase the overall simulation time. This approach may be
feasible when performing the MC simulation on a graphics
processing unit, where a significant acceleration compared with
a standard processor is reported.32,33

Finally, a method is presented that avoids calculation of
multiple MC simulations but still allows taking into account
the changes in the energy density distribution when the illumi-
nation moves with the detector. It gives a reasonable estimation
if the embedded structures have relatively low absorption. Such
a situation may arise in the near infrared, where blood vessels
still have good contrast in PA images, but the blood absorption is
much smaller than in the visible part of the spectrum. It can be
assumed that within the weakly absorbing structure the fluence
remains at its undisturbed value Ψ0, calculated with the back-
ground μa and μs values. In a first step, this fluence is calculated
for a static illumination of the phantom. To simulate a B-scan,
the sensor is positioned at its designated location relative to the
illumination beam and the μa-distribution of the embedded
absorbing structures, such as blood vessels, is shifted across
the fluence distribution, calculating at each position Wapprox ¼
μa Ψ0. Figure 2(b) shows a section through an energy density
distribution of a phantom containing several absorbing objects.
The values of absorption and scattering coefficient for these
objects are shown in Fig. 2(a). The background properties in
this phantom are from breast tissue, covered by a skin (epider-
mis) layer containing melanin.22 The phantom was illuminated
with a flat top beam with 0.6-cm diameter. Figures 2(c) and
2(d) show profiles through the energy density distribution,

comparing at different positions in the phantom the approxima-
tion outlined above (Wapprox) with the full MC simulation
(Wexact), which correctly models the drop of the fluence inside
an absorbing object. The best coincidence is achieved for the
spherical object with the lowest absorption. If the absorption
becomes higher, such as in the simulated blood vessels, the
approximation tends to overestimate the energy density. This
is expected as the approximation assumes the undisturbed
fluence inside the absorbing structure. Nevertheless, it is
reasonably accurate and allows a comparison between different
illumination geometries, assuming that the relative error due to
the overestimated fluence remains similar.

2.4 Experiment

An experiment was designed to compare the output of the model
with the real-world data. In this experiment, it was important to
build a phantom with well-defined optical properties, which
could be used as an input for the MC simulation. The outline
of the phantom and the sensor is shown in Fig. 3. The phantom
consisted of a block of agar (2% agar in water) containing
4% SMOFlipid (20% fat content, similar to Intralipid). A small
amount of indocyanine green (ICG) at a concentration of about
0.5 μg∕mL was added to the agar to achieve a background
absorption coefficient of 0.15 cm−1 at 750-nm wavelength. The
reduced scattering coefficient of the agar was μ 0

s ¼ 6 cm−1,
measured with oblique incidence video reflectometry.34 The
absorbing structures within the agar phantom were silicon tubes

Epidermis
-1µ  = 2,7 cma -1µ  = 133 cms

(a)

(b)

(c)

AB

Tumor
-1µ  = 0,47 cma -1µ  = 107 cms

Blood vessels
-1µ  = 4,0 cma -1µ  =  67  cms

Background     
-1 µ  = 0,05 cma -1 µ  = 112 cms

(d)

Fig. 2 (a) Outline of the numerical phantom containing several cylindrical blood vessels with 0.05- and
0.1-cm diameter, one “tumor” with 0.2-cm diameter, and an epidermal layer containing melanin (120-μm
thickness). Optical properties at 750-nm wavelength, with an anisotropy factor g ¼ 0.9 for the whole
phantom. (b) Logarithmic display of the energy density in the center plane of the phantom after illumi-
nation with a 0.6-cm diameter beam from below. (c) Profile through the exact energy density distribution
W exact along line A, compared with the approximation W approx ¼ μaΨ0. (d) Profiles along line B.
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with an inner diameter of 0.1 cm, filled with a solution of ICG
with a concentration of 90 μg∕mL and μa ¼ 20 cm−1, arranged
at depths of 0.5 and 0.75 cm, respectively. The phantom was
scanned with a detector made of the piezoelectric polymer
PVDF. The sensor had a thickness of 110 μm and had the
shape of a ring with an inner radius of 1.0 cm and an outer radius
of 1.18 cm. The annular piece of PVDF was glued onto a conical
substrate, which was inclined toward the ring axis by an angle of
25 deg. Such a sensor has the property to focus onto a line, pro-
viding a large depth of field. It combines properties of a large
area conical sensor25 and a flat ring,24,23 and is currently under
investigation as an element of an array of flat and inclined ring
sensors.35 The spectral response of the PVDF sensor was mod-
eled using a method originally proposed by Cox and Beard36 to
simulate the frequency-dependent directivity of an optical poly-
mer film used as Fabry–Perot interferometric ultrasound sensor.
It calculates the spectral response to a plane wave incident on
a three-layer system consisting of water, the piezoelectric PVDF,
and a matched backing material with the same properties as

PVDF. The output from an optical parametric oscillator, pumped
by a frequency-doubled Nd:YAG laser with 10-ns pulse dura-
tion, was guided to the sensor through a 1-mm core diameter
optical fiber. The end face of the fiber was imaged with a lens
through the center hole of the ring sensor onto the surface of the
phantom, generating a homogeneously illuminated area with
0.6-cm diameter. In the simulation, the approximation was
used where first the fluence distribution with fixed illumination
of a phantom without absorbers was calculated and then the
absorbing structures were scanned across the sensor. Although
the resulting energy density, given as the product of absorption
coefficient and undisturbed fluence, certainly overestimated
the actual values, the temporal signals and the relative ampli-
tudes of waves from different depths could be quite accurately
modeled in this way. As the acoustic waves in this experiment
propagated primarily in water, the acoustic damping properties
of water were used in the simulation, with an attenuation coef-
ficient that depends on frequency squared.37

For the ring sensor, there is no linear relationship between the
depth of the photoacoustic source and the time of flight of the
wave. To reconstruct depth profiles, we multiplied the trans-
posed impulse response matrix HT , calculated only for points
with ρ ¼ 0, with the temporal signal vector s. The effect of
applying HT is in this case a transformation from temporal to
spatial profiles along the detector axis. For this reconstruction,
H was derived from the pure SIR of the ideal sensor, without
the finite sensor bandwidth and without acoustic damping.

3 Results

3.1 Illumination Modes

In these simulations, the influence of the illumination geometry
on B-scan images of the phantom shown in Fig. 2(a), recorded
with a spherically focusing detector was investigated. The detec-
tor was modeled with a center frequency of 5 MHz, 100% band-
width, a focal length of 2 cm, and a numerical aperture of 0.5.
One purpose of this simulation was the investigation of deep
imaging in the near infrared. The focus of the sensor was, there-
fore, located at 1-cm depth below the tissue surface. The acous-
tic damping of tissue calculated with Eq. (11) was used for the
system response. Figure 4 shows how the EIR of this sensor,

Ring sensor

Tubes filled with
ICG solution

Agar

Laser
pulses

Fig. 3 Layout of the phantom and the sensor for the experiment.
The phantom is a block of light-scattering agar containing two plastic
tubes filled with an ICG solution, illuminated from below with laser
pulses. Acoustic waves are recorded with a ring-shaped, 110-μm
thick PVDF film detector mounted on a conical plastic block.

Fig. 4 Comparison of the photoacoustic signal gpa defined in Eq. (9) from a spherical source with 117-μm
radius with the convolution gatt � gel � gpa for different values of the propagation distance jr − r0j: (a) 1 cm
and (b) 3 cm.
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together with the acoustic attenuation, change the photoacoustic
signal gpa from the small, spherical source. The figure compares
gpa to the convolution gattðrd; r; tÞ � gelðtÞ � gpaðtÞ for two
different values of jr − r0j, 1 and 3 cm, denoting the distance
between the photoacoustic point source and a point on the sen-
sor surface. These two signals are two columns of the modified
convolution matrix G̃pa defined above, which performs the
nonstationary filtering.

The layout of the energy density distribution and the sensor
is shown in Figs. 5(a) and 5(d), at a position where the detector
is centered relative to the phantom. In this simulation, the
spatial increment in the numerical phantom with a size of
3 × 3 × 3 cm3 was Δx ¼ 117 μm. This leads to a maximum
generated acoustic frequency of fmax ¼ 6.4 MHz. The temporal
increment was Δt ¼ 40 ns, leading to a sampling rate two times
the minimum required for accurately resolving features with
fmax. The size of the impulse response matrix was given
by the number of temporal samples, K ¼ 976, multiplied by
the number of source positions ðρ; ζÞ in the cylindrical coordi-
nate system of the sensor, J ¼ 182 × 257 ¼ 46;774. The result-
ing double precision matrix occupied about 350 MB of storage.

For the dark field illumination, a ring with an inner radius of
0.6 cm and an outer radius of 1 cm was illuminated with
a fluence corresponding to the maximum permissible exposure
(MPE) at the selected wavelength of 750 nm, H0 ¼
25.2 mJ∕cm2. The incident angle of the annular beam was

45 deg. In this particular geometry, the incident beam would
just pass outside the acoustic detector and would not create
any strong surface signals within the detector’s receiving aper-
ture. For the center illumination, the fluence distribution was
calculated by assuming a beam diameter of 0.3 cm at the tissue
surface, again with the same MPE value. This beam diameter
simulates illumination through a center hole in the sensor
(1-mm radius) with an optical fiber having an NA of 0.4. As
the illumination had to move with the sensor, the approximation
was used in which the absorbing structures move across the flu-
ence distribution and at each scanning position the energy den-
sity is calculated as WapproxðrÞ ¼ μaðrÞΨ0ðrÞ. The epidermis
layer was present at all scanning positions and was, therefore,
included in the calculation ofΨ0. Figures 5(b) and 5(e) show the
B-scans for each of the two cases. These images display the
envelope of the pressure signals, calculated with the help of
the Hilbert transform. In both cases, the signal from the surface
is rather high and is therefore cropped, providing better visibility
of the deep structures. Although the total pulse energy is higher
for the axicon illumination, the relative amplitude of the surface
signal is similar (0.4) in both cases, as seen in the profiles dis-
played in Figs. 5(c) and 5(f). The main difference is the better
visibility of the deep structures for the dark field illumination,
where the ratio of signal amplitudes from buried sources to the
surface signal is much higher. The dark field illumination, on the
other hand, creates strong acoustic sources, which lie outside

Fig. 5 Comparison between dark field and center illumination. (a), (b), and (c): Dark field illumination;
(d), (e), and (f): center illumination. (a) and (d) Outline of energy density distribution and focusing sensor.
(b) and (e) B-scan images, (c) and (f) profiles along the dotted lines in (b) and (e).
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the focal volume of the transducer but are still detected. This is
a kind of “clutter,” which manifests itself as a hazy background
in Fig. 5(b).

3.2 Spectrally Resolved Imaging

This simulation used a forward signal acquisition geometry,
where the laser pulses irradiated a tissue slab from one side
and the detector scanned the object from the opposite side.
The illumination with a 0.6-cm diameter beam stayed at a
fixed position relative to the phantom and the spherically
focused detector moved relative to the obtained energy density
distribution. The purpose of this simulation was to analyze the
wavelength-dependent photoacoustic signal amplitudes of ves-
sels containing blood with different oxygenation levels. For this
analysis, we chose the two wavelengths λ1 ¼ 797 nm, where the
absorption coefficients of oxygenated and deoxygenated hemo-
globin are equal, and λ2 ¼ 750 nm, where deoxygenated Hb
absorbs more strongly. Figure 6(a) shows the absorbed energy
density in the phantom and indicates the illumination and detec-
tion geometry. Figures 6(b) and 6(c) show the images at λ1 and
λ2. The detector focused to a depth between the two pairs of
blood vessels with a numerical aperture of 0.4 at a focal length
of 2.5 cm. Electrical characteristics of the transducer and tissue
attenuation were the same as in the example above. Table 1 lists
the values of oxygenation and actual absorption coefficient. One
approach to derive oxygenation levels would use ratio values
of the pressure amplitudes at two wavelengths. Under the
assumption of similar fluence, these values would be equal to
the ratio of absorption coefficients. To assess the validity of
this simplified approach in our simulation, we calculated the
absorption coefficient ratios as well as the ratios of the pressure
values after normalization with the incident radiant exposure.
Signal amplitudes were obtained from areas of maximum
amplitude in the B-scan images. At the chosen wavelengths,
the ratio values agree quite well for the vessel with the higher

oxygenation level. For the lower saturation level, however, the
pressure amplitude ratio is lower than the corresponding absorp-
tion coefficient ratio. This is in agreement with the common
observation that a simple ratio analysis that does not take
into account the variation of local fluence with wavelength
leads to erroneous oxygenation levels.38

3.3 Comparison with Experiment

Figure 7 compares the measured and simulated B-scans of the
tube phantom. In both cases, the same reconstruction using the
transposed impulse response matrix was applied to the pressure
signals. The ring-shaped conical detector is responsible for the
“X”-shaped appearance of the two absorbers in the images. At
the focus line, the intersecting signals form the actual image of
the object with a lateral resolution that only slowly changes with
depth. This capability of generating a large depth of field is the

Fig. 6 Spectrally resolved PAM of blood vessels with different oxygen saturation sO2. (a) Outline of
energy density distribution at 750 nm and sensor in transmission mode. (b) and (c) B-scan images
at 797 and 750 nm, respectively.

Table 1 Spectral imaging of blood vessels with different oxygenation
saturation levels sO2. Absorption coefficients μa;750 and μa;797 are
given for the two wavelengths, 750 and 797 nm used in the simula-
tions. The ratio of absorption coefficients is compared with the ratio of
pressure amplitudes taken from the simulation in Fig. 6. z denotes
the depth below the phantom surface, as shown in Fig. 6.

sO2 ¼ 95% sO2 ¼ 75%

μa;750 3.04 cm−1 3.99 cm−1

μa;797 4.28 cm−1 4.28 cm−1

μa;750∕μa;797 0.71 0.93

z ¼ 2.4 cm: p750∕p797 0.70 0.88

z ¼ 2 cm: p750∕p797 0.72 0.86
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benefit of this kind of axicon sensor. The drawback is the “X”-
shaped artifact, which can be reduced by some kind of
deconvolution25 or by using an array of concentric rings.23,35

The width of the X’s, the depth dependence of amplitudes,
and the overall appearance of the images agree between simu-
lation and experiment.

4 Discussion
The presented simulation method for photoacoustic imaging of
an arbitrary distribution of deposited energy is particularly
suited for situations, where the received acoustic waves have
to be integrated over the surface of a finite size detector. In
the specific examples of focused detector scanning, we could
show that the simulation of a 2-D photoacoustic image from
a Monte–Carlo generated absorbed energy distribution takes
only about one minute. The spatiotemporal impulse response
matrix and the energy density distribution have to be precom-
puted, requiring about one minute and some tens of minutes,
respectively. The precomputed H and WðrÞ can be combined
almost arbitrarily, meaning that one energy density distribution
can be scanned with several sensors having different response
matrices, or the same sensor can be tested with different WðrÞ
distributions. The only prerequisite is the use of appropriate dis-
cretization for the used acoustic frequency range. The system
response used here is represented by a single matrix that models
the complete process of wave propagation, spatial averaging
over the sensor area and electrical characteristics of the trans-
ducer. Even an extension of this matrix taking into account
a more complex behavior of the sensor, such as frequency-
dependent directivity effects of a piezoelectric material would
be possible. As the system response matrix is precomputed,
such a modification would not affect the complexity of the
actual simulation of pressure signals.

Modeling of photoacoustic signals from arbitrary sources is
also possible with the pseudospectral method implemented in
the k-wave toolbox for MATLAB. It is, therefore, worthwhile
to compare the prerequisites and performance of the SIR method
described in this study with k-wave. First of all, there is a fun-
damental difference in how the signals are calculated: k-wave
computes the pressure field within the whole computational
grid at defined time steps. In the time-domain integration under-
lying the SIR method, the signal at a defined receiving point is
obtained for all times. To implement a finite size detector with
k-wave, e.g., a concave surface for focusing, the pressure is

recorded for defined points lying on the sensor surface while
the wave passes. In the SIR method, the single point signal
is convolved with the spatially varying impulse response of
the sensor to achieve signals for the focusing detector. The
great advantage of the k-wave method is that not only the source
strength but also all other relevant material parameters can be
defined point by point on the computational grid, such as the
sound speed or the acoustic attenuation coefficient. The SIR
method, on the other hand, assumes constant (average) values
of these parameters. Concerning computation time, it has
already been mentioned that a single A-scan with the SIR
method takes about the same time as a single time step with
the k-space method. Calculation of an A-scan with a focused
detector, therefore, takes much longer with the latter, because
a large number of time steps have to be computed for recording
the acoustic wave passing through the points that form the detec-
tor surface. These points have to be within the computational
grid, together with the initial pressure distribution from the
MC simulation. This is not necessary when using the SIR
method, where the detector response can be calculated also
for remote source positions. Here, both the sensor surface
and the source distributions can be simulated on a very fine grid.

We presented an approximation for a scanning transducer,
where the absorbing structures within the simulated tissue phan-
tom were shifted relative to the transducer and the energy den-
sity was obtained by multiplying the shifted absorption
coefficient distribution with the static fluence distribution of
the “empty” phantom. This phantom had appropriate values
of background optical properties and contained the epidermis
as a structure that did not change during scanning. This lead
to a considerable acceleration of the computation, where the
MC simulation was the main bottleneck. In our code, the
MC simulation for 106 photons required about half an hour.
This is almost inhibitive for calculation of B-scan images,
where on the order of one hundred such scans are necessary.
However, faster implementations of MC codes are known,
where it becomes feasible to calculate a new light distribution
for each scanning position. Another alternative to multiple MC
simulations could be methods that approximate the influence of
absorbing structures on the fluence distribution, such as pertur-
bation MC models.39 Also for the diffusion approximation,
perturbation methods are known, which are able to model the
influence of inserted absorbing and scattering structures into
a background light distribution.40

Fig. 7 Comparison between simulated and experimental B-scan images of the phantom shown in Fig. 3.
(a) Simulation and (b) experiment.
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5 Conclusions
The presented simulation method for PAM combines MC
simulations of light transport with a time-domain method for
acoustic propagation and detection, which is based on the
SIR of a focusing sensor. The proposed method can be useful
for accurate modeling of PAM, helping in the design of
transducer and illumination systems. Furthermore, it provides
an accurate forward model for any kind of model-based
reconstruction in PAM.
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