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Abstract. Optical spectral images can be used to estimate the amount of bulk absorbers in tissues, specifically
oxy- and deoxyhemoglobin, as well as scattering parameters. Most systems that capture spectral image data are
large, heavy, and expensive. This paper presents a full end-to-end analysis of a low-cost reflectance-mode
multispectral imaging system operating in the visible and near-infrared spectra. The system consists of 13 LEDs
mounted on a printed circuit board, a monochrome machine vision camera, and a tablet computer to control the
hardware. The bill of materials for the system is less than $1000. Hardware design and implementation are
detailed. Calibration, image capture, and preprocessing are also discussed. In validation experiments, excellent
agreement is observed in diffuse reflectance measurements between the spectral camera setup and a spec-
trometer. To demonstrate that such spectral image data can yield meaningful optical measurements in vivo, the
forearms of eight volunteers are imaged in the system. Their data are then analyzed to estimate the tissue optical
properties of different skin layers using a Monte Carlo lookup table. In three volunteers, spectral images are
captured before and after inducing erythema using a warm wet towel. Across the three subjects, a clear increase
in the blood content of the superficial plexus layer was observed as a result of the erythema. Collectively, these
findings suggest that a low-cost system can capture accurate spectral data and that clinically meaningful infor-
mation can be derived from it. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.23.12.121612]
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1 Introduction
Diffuse reflectance spectroscopy, where a broadband source
illuminates a sample and the reflected spectrum is measured,
is a well-trusted method for noninvasively characterizing bio-
logical tissues.1,2 The diffuse reflectance signal is a function
of the wavelength-dependent bulk optical properties of the tis-
sue. With proper modeling, it is possible to estimate the concen-
tration of specific chromophores in the tissue. The scattering
properties, which also affect the diffuse reflectance signal,
can also be estimated.

In the visible and near-infrared (NIR) wavelength ranges, the
main absorbers in tissue are water, oxy- and deoxyhemoglobin,
and melanin. Assessing the concentrations of these chromo-
phores can be used to identify pathological changes in tissues.
Such measurements have been shown to identify lesions in
several tissues, including breast,3,4 skin,5 oral cavity,6 bladder,7

esophagus,8 and the uterine cervix.9,10 Reflectance mode spec-
troscopy has also be used to characterize other chromophores in
tissue, such as bilirubin when trying to assess jaundice in
neonates.11 The main disadvantage of spectroscopy is that it is
based on point measurements that average over a large area.
Thus, a visual follow-up is often needed, particularly when
clinical workflow requires selecting sites to biopsy.

The challenges posed by point measurements can be over-
come by spectral imaging, in which images of the tissue of inter-
est are captured at different wavelengths, resulting in a two-
dimensional (2-D) array of spectral measurements. Each pixel

has an associated spectrum that can be analyzed in search of
pathological abnormalities, which allows clinicians to identify
suspicious regions in the tissue for further examination.12–14

Multispectral imaging has been primarily used in dermatologi-
cal applications, to monitor portwine stain treatment,13 burns,15

and diabetic foot ulcers.16

Despite the advantages of multi- and hyperspectral imaging
in obtaining clinically relevant information, few commercial
systems that can assess oxygen saturation in images exist,
and those that are FDA-cleared cost upward of $40,000 and
are often difficult to use.17–19 In contrast to these expensive,
cart-filled systems from 15 years ago,20,21 the revolution in con-
sumer electronics has made low-cost cameras and LEDs ubiqui-
tous, bringing down the costs significantly. Several groups and
companies have attempted to build a low-cost multispectral im-
aging system that can quantify scattering and absorption in the
tissue,22–24 including some based on LED illumination at various
wavelengths,25–28 in which spectral data were validated against
spectral measurements from existing systems. However, a full
end-to-end analysis that shows both the ability to reproduce a
broad spectrum in an accurate way and yields reasonable in
vivo scattering and absorption measurements with low-cost
hardware has been elusive, and there have been questions about
the overall feasibility of using low-cost hardware to make
clinically relevant optical measurements.

In this work, we present the end-to-end functionality of
a low-cost multispectral imaging system that captures 13 high-
resolution images at different illumination wavelengths. The
system is based on an area-scan camera and low-cost LEDs,
such that the bill of materials is less than $1000. Fitting algo-
rithms that analyzed the spectral data estimated the amount of*Address all correspondence to: David Levitz, E-mail: levitz@mobileodt.com
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each absorber (oxy- and deoxyhemoglobin, water, and
melanin), as well as the overall scattering properties of the
tissue. To validate our measurements, we performed a series
of standard experiments used to characterize spectral systems.
First, we compared spectral data measured with our system
to white-light spectrometer readings of the 24 different color
tiles from a color calibration card. We then captured in vivo
images of skin from healthy volunteers, and reconstructed whole
spectra using a lookup table based on Monte Carlo simulations.
Finally, we captured images of a normal skin before and after
erythema, demonstrating the ability of the measurements to
noninvasively assess a change in tissue properties. Our results
show that building a low-cost imaging system that can measure
scattering and absorption is indeed feasible and that with proper
calibration and modeling, such a system can be adapted to
a specific clinical application.

2 Theory
A diffuse reflectance measurement on skin can be described by
Ref. 29:

EQ-TARGET;temp:intralink-;e001;63;531Mskin ¼ SRskinCskinD; (1)

where S is the wavelength-dependent intensity of the source,
Rskin is the reflectance of the skin, Cskin is the fraction of
reflected light collected by the camera, and D is the wavelength
dependent response of the detector (the camera). Similarly, the
measurement on a reflectance standard (e.g., where Rstd ¼ 0.99)
is given by Ref. 29:

EQ-TARGET;temp:intralink-;e002;63;430Mstd ¼ SRstdCstdD; (2)

where Cskin equals Cstd in these experiments as both skin and the
reflectance standard were placed at the same aperture during
measurements. The ratio M ¼ Mskin∕Mstd cancels the effects
of S;D, and C,29 such that:

EQ-TARGET;temp:intralink-;e003;63;355Rskin ¼ MRstd: (3)

The parameter Rskin depends on the absorption and scattering
properties of the different tissue layers in the skin (epidermis,
papillary dermis, reticular dermis, etc.). The absorption proper-
ties of any tissue type are specified as

B = the blood volume fraction (B ¼ 1 for whole blood,
150 g hemoglobin/liter),

S = the oxygen saturation of hemoglobin in blood,
W = the water volume fraction (W ¼ 1 for pure water),
M = the volume fraction of typical cutaneous melano-

somes in the epidermis,30

fi = the volume fraction of any additional (arbitrary)
absorber in the tissue,

which are used to calculate the absorption coefficient:13

EQ-TARGET;temp:intralink-;e004;63;149

μaðλÞ ¼ BSμa:oxyðλÞ þ Bð1 − SÞμa:deoxyðλÞ þWμa:waterðλÞ

þMμa:melanosomeðλÞ þ Σifiμa;iðλÞ: (4)

The absorption coefficients of oxy- and deoxyhemoglobin in
whole blood [μa:oxyðλÞ and μa:deoxyðλÞ] are from Prahl.31 The
absorption coefficient of water is from Hale and Querry,32

converted from the reported imaginary refractive index n 00
into μa:water ¼ 4πn 00∕λ½cm−1�. The reported absorption coeffi-
cient of the interior of a cutaneous melanosome30 is described
as μa:melanosomeðλÞ ¼ ð679.16 cm−1Þðλ∕500 nmÞ−3.33.

The scattering properties of any tissue type are given as:

μ 0
s 500 nm = the reduced scattering at 500 nm,

f = the fraction of scattering at 500 nm due to structures
much less than 500 nm (Rayleigh scattering),

(1 − f) = the fraction of scattering at 500 nm due to struc-
tures comparable to or >500 nm (Mie scattering),

bMie = the scattering power for such Mie scattering
(typically <1),

g = the anisotropy of scattering,

which are used to calculate the reduced scattering coefficient:13

EQ-TARGET;temp:intralink-;e005;326;570

μ 0
sðλÞ ¼ μ 0

s500 nm

�
f

�
λ

500 nm

�
−4

þ ð1− fÞ
�

λ

500 nm

�
−bMie

�
:

(5)

This μ 0
s is related to the scattering coefficient μs ¼ μ 0

s
1−g. The

values μa; μs, and g are used in a light transport model
(Sec. 3.7).

3 Materials and Methods
Altogether, three sets of experiments were performed. To char-
acterize the performance of the system, we captured spectral
image data of different tiles from a color calibration card and
compared them with point spectroscopic measurements. We
then captured spectral images of skin (forearm) from eight
healthy volunteers and reconstructed spectra that best fit the
data. Finally, we captured spectral images of skin from three
healthy volunteers before and after inducing erythema by
placing a warm wet towel on the skin. In our analyses, we
used a GPU version of the multilayer Monte Carlo model
(CUDAMCML33) to estimate tissue composition, showing how
local changes in optical properties of tissue layers can be
determined from the system.

3.1 System Design

A schematic of our imaging system is shown in Fig. 1(a).
Pictures of the entire system and optical head are shown in
Figs. 1(b) and 1(c), respectively. Briefly, the imaging system
can be subdivided into an illumination module, a detection
module, and a tablet computer that controlled illumination and
imaging by the system.

In the illumination module, spectral illumination was pro-
vided by a set of LEDs across the visible and NIR regions
mounted on a printed circuit board (PCB). Visible LEDs
were LUXEON Z from Lumileds, NIR LEDs were LX1
from LED ENGIN. A list of the LED central wavelength and
bandwidth [full width at half maximum (FWHM)] is shown
in Table 1. Electrical current to drive the LEDs was provided
by a simple low-side field effect transistor (FET) switch with
current limited by a series resistor. As each LED has a unique
voltage drop, resistor values were selected to match each LED.
A microcontroller developer board (Arduino Nano) was used to
interface the LED drive board to the computer system. Beam
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uniformity across LEDs was achieved using LEDs with a wide
illumination angle without any focusing optics in the illumina-
tion path.34 In addition to spectral illumination, there was also a
white LED (Cree XLamp) used to illuminate the tissue when the
spectral LEDs were turned off (i.e., in preview mode), providing
a view of the tissue to position the system properly; a white LED
was also integrated into the multispectral PCB but not used in
the analyses. This preview mode white LED was mounted sep-
arately, with its own PCB. A linear polarizer was installed in
front of all the LEDs (Edmund Optics).

The detection module consisted of a low cost monochrome
camera (Basler puA2500–14 μm) coupled mechanically to
a 25-mm machine vision lens (Basler) and a linear polarizer
(Midwest Optics). The camera polarizer was oriented orthogo-
nally to the illumination module polarizer to eliminate glare.
The camera and lens were selected such that ∼4.7 cm was
imaged along the camera’s short axis at an appropriate working
distance of 30 cm.

The entire system was controlled by a tablet computer (Acer)
that runs custom application software, which allows the operator
to preview the image scene, perform image capturing sequences,
and store the data both locally and at a remote location for
subsequent analyses. The bill of materials of the entire system,
including the computer, was under $1000.

3.2 Spectral Image Acquisition

The spectral camera (Fig. 1) was set up at normal incidence to
the target, at a distance of 30 cm. The LEDs were placed next to
the camera port, where the center of the LEDs was 4 cm from the
center of the LEDs, ∼7.5 deg. To ensure no specular glare is
collected, the illumination and imaging ports were polarized
orthgonally to each other. In total, five individual spectra
were captured per sample and analyzed by the model for each
sample/imaging condition. All the experiments were conducted
in a dark room.

During an image capture procedure initiated by the user, the
white LED (for preview mode) turned off, and the PCB LEDs
were turned on and off sequentially, with image data captured
at each illumination wavelength. Each LED had a different
exposure time, determined by imaging the calibration standard
and scaling appropriately. Dark frames were also captured.
Altogether, four images were captured at each wavelength,
with the exposure time varied linearly across the sequence to
assess LED output and verify the measurements. A total
sweep of all the LEDs (four sweeps of 13 LEDs) took ∼30 s.

For each of the experiments described below, spectral images
and spectrometer readings were captured from the sample
(Isample), as well as a dark frame (Idark). In each imaging session,
we also captured a calibration image (Icalib), off a 99% spectra-
lon reflectance standard (Labsphere). The reflectance was cal-
culated using Eq. (6) for each sample:

Table 1 Comparison of central wavelength (and FWHM) of LEDs
reported by a vendor to spectrometer measurements. Note the
white LED (a) was not used in the analyses described in Sec. 3.6.

LED name
(internal)

Reported by
the vendor [nm]

Measured by
spectrometer [nm]

UV1 395 (11) 403 (12)

UV2 425 (14) 426 (14)

Royal blue 447 (20) 453 (20)

Blue 470 (20) 477 (27)

Cyan 505 (30) 505 (31)

Green 530 (30) 526 (38)

Lime 568 (100) 542 (89)

Amber 590 (80) 600 (18)

Red1 627 (20) 637 (16)

Red2 655 (20) 663 (19)

IR1 740 (20) 732 (38)

IR2 850 (30) 855 (34)

IR3 940 (40) 948 (66)

Whitea N.A. N.A.

Fig. 1 (a) Imaging system block diagram, (b) full system setup with tablet, and (c) optical head.
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EQ-TARGET;temp:intralink-;e006;63;596R ¼ 0.99 � Isample − Idark
Icalib − Idark

: (6)

3.3 Reflectance Spectroscopy Measurements

To validate our multispectral imaging setup, we mounted
reference samples against a 3-cm diameter aperture and took
measurements both using the spectral camera and using a white-
light spectrometer (Flame-S 2000 spectrometer, Ocean Optics).
Spectrometer-captured spectra (Fig. 2) were used for compari-
son. Complete spectra were captured with a 4.75 W Tungsten
Halogen bulb white-light illumination light source (Ocean
Optics). Light diffusely reflected from the sample was collected
by a 400 μm multimode fiber, placed at normal incidence at a
distance of 2 cm from the target. The light source was placed at
a distance of 8 cm and at an angle of 30 deg from the normal
such that the sample was illuminated obliquely, with the
specular reflection pointing away from the probe. The probe
only acquired the central part of the aperture to minimize effects
of lateral light leakage, with an acquisition time of 300 mS.

3.4 Color Card Imaging

Spectral data were captured from different tiles of a color cal-
ibration card (MacBeth chart, X-Rite ColorChecker Classic).
Each of the 24 colored tiles were mounted against a 3-cm diam-
eter aperture and imaged with our multispectral setup (Fig. 1)
and with the spectrometer (Fig. 2). Pixels corresponding to
a region of 2- × 2-cm were averaged and calibrated according
to Eq. (6); a similar process was carried out with the spectrom-
eter measurements.

3.5 In Vivo Skin Imaging

Two sets of skin imaging experiments on healthy volunteers are
presented here. First, to characterize the variation of tissue prop-
erties in normal skin, we captured multispectral images (Fig. 1)
of forearm skin from eight healthy volunteers. All volunteers
were Caucasian from European and Middle Eastern ethnicities
and were 37� 8.7-years old. The forearm was mounted against
the aperture on the target. Calibration images of a white standard
were acquired once at the beginning of the procedure.

In the second experiment, to verify that the system can assess
changes to the skin’s tissue properties, we captured multispec-
tral data before and after inducing erythema, which temporarily
increases the blood content of the superficial skin. First, a
“before” spectral image set was captured. To induce erythema,
we placed a warm wet towel on the forearm for ∼2 min, until

the skin turned visibly red. We then captured a second spectral
image set immediately after the cloth was removed (“eryth-
ema”). Several pen marks were made on the participants’ fore-
arms that matched up to an aperture that fixed the imaging
distance, thus ensuring that the position and orientation were
repeatable for before and after erythema images. A correspond-
ing calibration image set was captured once for all three
volunteers.

3.6 Spectral Data Analysis

Spectral data captured using the multispectral imaging system
and the spectrometer were analyzed using scripts written in
Python on a remote workstation. In each spectral dataset, the
2- × 2-cm region of interest (ROI) at the center of the aperture
was delineated for further analysis. Lateral (x; y) pixels in the
ROI were averaged, and then fit to a six-layer Monte Carlo
model described in Sec. 3.7, yielding a matrix of specified
absorption parameters (B; S;W;M; μ 0

s500; f; bMie, and g) at each
layer.

3.7 Monte Carlo Simulations

To relate the spectral reflectance measurements to tissue proper-
ties, we fit the spectral camera results using a Monte Carlo
lookup table. The Monte Carlo simulations were based on
a refined version of the CUDAMCML33 running on a GPU
(GTX1060, Nvidia). To create the table, we modeled the tissue
as a six-layer medium, representing the epidermis, basal layer,
papillary dermis, dermal venous plexus, reticular dermis, and
subcutaneous tissue. Within this six-layer tissue model, we con-
sidered the following parameters in each layer: B�; S�;W;M�,
μ 0
s500 nm, f, bMie, and g,2 those marked with an asterisk were

varied, details are shown in Table 3. Layer thickness was
fixed for all analyses; epidermis (50 μm), basal layer (10 μm),
papillary dermis (250 μm), dermal venous plexus (50 μm),
reticular dermis (1 cm), and subcutaneous dermis (10 cm).
A Python script was used to convert the table of tissue param-
eters to MCML input files files for 63 wavelengths, from 380- to
1000-nm in steps of 10 nm. Altogether, we simulated 1400 per-
mutations at each of the 63 wavelengths.

To compare the measured spectra with the simulations, we
converted the 63-point spectra into a 13-point spectra by multi-
plying (dot product) the simulations with each of the LED mea-
sured spectra, where each LED spectrum was normalized such
that the sum of values was equal to unity. We then calculated the
sum of squared error for each of the permutations and found the
one with the lowest value. Note that because of the complexity
of parameter space, in the erythema experiment, we fixed most
of the parameters in the model, restricting the parameters that
could change to blood content and oxygen saturation in the
superficial plexus layer, as well as epidermal/basal melanin
(keeping Mbas ¼ 3 �Mepi

35).

4 Results

4.1 Multispectral Imaging System Validation

To validate the spectral camera system, spectral data were col-
lected from the color calibration card using both the multispec-
tral imaging system and the white-light spectrometer. A picture
of the color calibration card is shown in Fig. 3 (top), and
the comparison between the two spectral methods for each

Fig. 2 Spectrometer system for generating ground truth spectral data.
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of the 24-color squares is shown in Fig. 3 (bottom), with
the red curve representing the spectrometer, and the blue dots
representing measurements from individual LEDs. As can be
seen, there is a good agreement between the two systems on
each of the 24 samples. We took this agreement as an indication
that our LED spectral camera yields reliable spectral data.

4.2 Multispectral Imaging of Healthy Skin

Using our multispectral imaging system, we imaged skin on the
forearms of eight healthy subjects and fit the data to a theoretical
model. Figure 4 compares LED data (green dots), the best fit
spectrum (blue line), and the dot product of the best fit spectrum
and the LEDs’ spectral shape (blue exes), to account for the
finite LED bandwidth following the method described in
Sec. 3.7. Good overall agreement can be seen point-wise
between the spectral data and the best fit curve for the eight sub-
jects (Fig. 4). Moreover, the estimated parameter concentrations
are within normal physiological levels (Table 2). In assessing the

performance of individual LEDs, the Lime LED (568 nm) and
to a lesser degree the IR3 LED (940 nm) seem to be consistently
higher than the fitted curves while maintaining a good match
with the pointwise fit. We believe that this is due to the 89-
and 66-nm FWHM of the LEDs (Table 1) and the spectral
shape of the tissue, which begins to dramatically increase part-
way through the LED’s spectrum.

4.3 Multispectral Imaging with Erythema

To determine if our spectral camera setup can identify changes
in optical properties, we also captured additional image sets
from three healthy volunteers before and after inducing eryth-
ema. The tissue properties corresponding to the spectral data
were then determined from a Monte Carlo lookup table, assum-
ing the tissue as a six-layer model (Sec. 3.7). The spectral data
(dots), as well as reconstructed curves for the best fit lines (solid
line) as captured before (blue) and after (red) erythema, are
shown in Fig. 5.

Fig. 3 Photo of Colorchecker classic card (top), with a comparison of spectral camera to a spectrometer
(bottom).
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In analyzing spectral data from this experiment, we kept most
of the parameters in the various layers fixed, and only varied the
blood content and oxygen saturation in the superficial plexus
layer, as well as the melanin content in the epidermal and basal
layers (the ratio of which was fixed at 1:3).35 Numerical esti-
mates for the fixed parameters in each layer are shown in
Table 3. Plots of the sum of errors as a function of blood content

at various oxygen saturation and melanin values are shown in
Fig. 6. It can be seen that the blood content in the plexus
layer is more than doubled as a result of inducing erythema.
Additionally, the similarities between the curves representing
different oxygen saturation levels show that our model and sys-
tem are less sensitive to changes in oxygen saturation than to
changes in blood content. Considering we have a few LEDs

Fig. 4 Spectral camera measurements (green dots) versus estimated fit spectra (blue line) and the prod-
uct of the LED spectrum and the estimated fit spectra (blue exes) for eight volunteers participants.

Table 2 Estimated average tissue parameters for eight volunteers (with standard deviation). For completeness, values of μa and μs at 500 nm are
also shown, determined from Eqs. (4) and (5).

Layer B S W M μ 0
s500 f bMie g μa500 μs500

Epidermis 0 (—) 0.75 (—) 0.75 (—) 0.03 (0.003) 40.00 (—) 0 (—) 1.00 (—) 0.90 (—) 20.38 400.0

Basal layer 0 (—) 0.75 (—) 0.75 (—) 0.122 (0.01) 40.00 (—) 0 (—) 1.00 (—) 0.90 (—) 82.86 400.0

Papillary dermis 0.0005 (—) 0.55 (—) 0.65 (—) 0 (—) 30.00 (—) 0.62 (—) 0.91 (—) 0.90 (—) 0.11 300.0

Dermal venous plexus 0.048 (0.028) 0.819 (0.066) 0.75 (—) 0 (—) 10.00 (—) 0.62 (—) 0.91 (—) 0.90 (—) 5.38 100.0

Reticular dermis 0.0005 (—) 0.55 (—) 0.65 (—) 0 (—) 30.00 (—) 0.62 (—) 0.91 (—) 0.90 (—) 0.11 300.0

Subcutaneous tissue 0.05 (—) 0.55 (—) 0.75 (—) 0 (—) 10.00 (—) 0.60 (—) 0.90 (—) 0.90 (—) 5.60 100.0
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in the 600- to 700-nm range, which were identified to be
problematic in Sec. 4.1, this result makes intuitive sense.
Additionally, we also see that there is a coupling between the
optimal blood content as a function of melanin concentration.
Because both melanin and oxy- and deoxyhemoglobin absorb
more at lower wavelengths,2 these observations also make intui-
tive sense.

5 Discussion
The results presented here show the end-to-end characterization
of a low-cost multispectral imaging system built with a $1000

bill of materials. The system was based on a PCB with 13 LEDs
and an area scan camera that are controlled by a tablet.
Altogether, we ran three sets of experiments to provide evidence
that this system captures useful spectral data and allows for
estimation of tissue chromophore content. The first experiment
validated that the spectral data generated by our system yield
comparable measurements to spectra measured with a spectrom-
eter by comparing data from a color calibration card. Next, we
used the system to capture image sets of the forearm of eight
volunteers and fitted a tissue model (via a Monte Carlo lookup
table) to the readings, demonstrating that the fitted values were

Fig. 5 Spectral camera measurements (points) versus estimated spectral fit spectrum (line) for normal
skin (blue, dots and solid line) versus induced erythema (red, exes and dashed line).

Table 3 Base tissue parameters used to construct the tissue lookup table used in both experiments. Superscript v represents parameters that
were varied. For completeness, both μa and μs at 500 nm are also given, calculated from Eqs. (4) and (5).

Layer B S W M μ 0
s500 f bMie g μa500 μs500

Epidermis 0 0.75 0.75 0.03v 40 0 1 0.9 20.38 400.0

Basal layer 0 0.75 0.75 0.12v 40 0 1 0.9 81.50 400.0

Papillary dermis 0.0005 0.55 0.65 0 30 0.62 0.91 0.9 0.56 300.0

Dermal venous plexus 0.15v 0.9v 0.75 0 10 0.62 0.91 0.9 16.81 100.0

Reticular dermis 0.0005 0.55 0.65 0 30 0.62 0.91 0.9 0.06 300.0

Subcutaneous tissue 0.05 0.55 0.75 0 10 0.6 0.9 0.9 5.60 100.0
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Fig. 6 Measurement of fitting error as a function of blood content, for different oxygen saturation levels
(curves) andmelanin values (a)–(l). Normal skin (blue) versus induced erythema (red). Separate plots are
shown for each of the three volunteers. The vertical lines represent in each curve show where the error
function was at a minimum.
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within physiological ranges. Finally, we showed that our setup is
capable of assessing a clear change in tissue composition (blood
content of the superficial plexus layer) in spectral images
captured before and after inducing erythema in three volunteers.
Taken together, these results suggest that our portable, low-cost
system is capable of reliably measuring spectral differences in
tissue layers.

For several years, it has been known that spectral imaging
systems do need to not be large or expensive, and indeed, multi-
ple groups have built such systems.22,24,27,36,37 However, to our
knowledge, these are the first end-to-end analyses that show it is
possible to estimate tissue scattering and absorption properties
with a low-cost system and that expensive hardware is not nec-
essary for making clinically relevant measurements. Until now,
validation of low-cost spectral analysis systems has focused pri-
marily on the hardware, with less emphasis on the analysis and
measuring optical properties. The tissue parameters measured
by our system—blood content, oxygen saturation, and scattering
from different tissue layers—are fundamental descriptors of
tissue that provide a snapshot of its physiology on the micron
scale. They provide information that clinicians would love to
access but have not been able to, outside of a research setting
at large university hospitals. Indeed, most systems that make
such measurements that are in clinical use today are built on
a cart.20,21,38 The small-form factor, light weight, and low
power nature of our system allow it to be portable, carried by
physicians who move between patients beds or between clinics.
If successfully translated and productized, it can have a pro-
found effect on clinical care.

The big unknown question with our setup is how does it com-
pare with more expensive spectral imaging systems, specifically
in terms of the ability to make scattering and absorption mea-
surements. Here, Fig. 3 shows that reflectance from the LEDs
matched very well with the spectrometer. Errors of ∼10%
reflectance were only found on one LED (590 nm) on three of
the 24 squares, representing <1% of the total measurements.
Figures 4–6 show that even with inexpensive components, it
is still possible to build a system capable of generating data
that enables quantitative measurements of tissue scattering and
absorption. The main compromise in our system was in the time
required to prepare the data analysis. The time it took to itera-
tively run simulations to analyze a single spectral measurement
was over two days using a modern GPU. This is because the
process involved running tens of thousands of CUDAMCML
simulations that took time and drive space. Comparing these
data with spectra we measured took only a few seconds. The
Monte Carlo lookup table method, while computationally
expensive in our experiments, can be optimized to run much
more efficiently using methods derived from artificial intelli-
gence (AI),13,39 which will ultimately allow deployment on com-
puters with less computational power. AI is particularly
promising in this respect, as it utilizes a large Monte Carlo
lookup table for training, yet the resulting classifier is not
very large.

The main challenge with getting meaningful information out
of the spectral measurements made by our setup is fitting it to
the right model of light transport in tissue. Earlier attempts at
fitting experimental data to a model were often based on a
diffusion theory approximation.12 Although diffusion theory
is straightforward for a semi-infinite medium, diffusion math
gets complicated when there are multiple layers to the tissue.
Because skin is a multilayer tissue, fitting algorithms based

on diffusion theory can only be trusted so-far, and Monte
Carlo approaches are preferred. We saw this with our spectral
data (data not shown). Specifically, within the context of experi-
ments like the one shown in Fig. 5, the analysis becomes chal-
lenging: inducing erythema on a semi-infinite tissue, the average
increase in blood content to the entire tissue is not very large.
However, within the context of a layered tissue model, it
becomes very apparent that increasing (doubling) the blood con-
tent in the superficial plexus layer causes the change in spectral
diffuse reflectance measured by the spectral camera. Thus,
Monte Carlo-based approaches are required to make meaningful
measurements using our system.

In assessing the accuracy of the in vivo analysis, Fig. 6 shows
that the model and system are much more sensitive to changes in
blood content and melanin content than to oxygen saturation.
The reason for this is because the number and quality (stability,
FWHM) of the specific LEDs needed to estimate oxygen satu-
ration was limited. There were larger variations in output from
the relevant LEDs relative to the other LEDs in the setup,
specifically the Amber (590 nm). This can be seen in the color
calibration data where this LED has a lower reflectance than
measured by the spectrometer in the white, neutral 8, and neutral
6.5 squares but not the others (Fig. 3). The other important LED
for this measurement, lime (568 nm), has a FWHM of 89 nm,
and this large bandwidth exerted a non-negligible influence
from nearby wavelengths on the measured reflectance, which
reduced our sensitivity to measuring changes affecting that
part of the spectrum.

In addition to challenges caused by the hardware, there are
also some inherent challenges in working with a multilayer
Monte Carlo model, as the fitting analysis becomes an under-
determined problem, with more unknowns than measurements.
Such a problem requires making assumptions on tissue layers
when oftentimes there is insufficient information in the litera-
ture. For example, differences in scattering properties between
the papillary and reticular dermis significantly lowered our fit-
ting error for one of the volunteers (data not shown), but making
such educated guesses is not trivial, as there are not many
reliable measurements of scattering by different dermal layers.
Similarly, variations in the water content across the various
layers have not been properly assessed. Rigorous studies of
the actual values of many of these tissue parameters are neces-
sary to improve measurement accuracy.

An alternative approach for assessing blood content and oxy-
gen saturation in tissues is spatial frequency-domain imaging
(SFDI)40 and its derivatives. SFDI holds two key advantages
to unmodulated imaging (e.g., continuous wave) approaches:
the ability to measure the absorption and scattering separately
from each other and being able to control for the depth in
which the measurement is made using the modulation fre-
quency. However, the SFDI systems built to date are based pri-
marily on red and NIR light and are thus less suitable for layered
tissues, such as skin or the cervix, in which the layer of interest
is superficial and spans only a couple of hundred microns in
depth. Indeed, higher spatial frequencies and shorter wave-
lengths that have been demonstrated to date in vivo are required
for making such measurements accurately. Our system uses
shorter wavelength light (purple, blue, and green) that is
more suitable for assessing changes in layered tissues.
Moreover, while there have been recent advances in making
low-cost SFDI devices (and variants),41,42 to our knowledge
there has not yet been a noncontact, low-cost, small-form factor
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device validated in a clinical settings. Thus, while both methods
make similar measurements and rely on similar light transport
models for data analysis, they are suited for different clinical
applications.

It is important to note that Monte Carlo models are specific to
a particular tissue (i.e., skin), even though they can be easily
adapted for alternative geometries of additional tissues. This
is another issue to consider when designing such a system.
Our system was designed for cervical imaging using a colpos-
copy imaging geometry. A system like the one described here
was deployed in a cervical cancer clinic to look for cervical
dysplasia.43 An exploratory trial has already began.

Additional future work will critically assess the combination
of LEDs used for the spectral illumination to maximize perfor-
mance at reduced cost. The current implementation is limited
by assumptions made in the fitting method, which employs a
limited set of tissue parameters. More extensive Monte Carlo
methods will be implemented to better optimize the method,
as a larger lookup table can provide finer estimates of tissue
parameters.

6 Conclusion
We presented an end-to-end analysis of a low-cost multispectral
imaging system, from design to development and validation,
and measuring optical properties of tissue in vivo. Our results
show that images captured with a low-cost spectral camera
setup yield comparable fitting results as measurements captured
by a spectrometer. Such measurements were made on 24
calibration samples, showing overlap in measured diffuse
reflectance. We then demonstrated that it is possible to measure
optical properties of the imaged tissue using a multilayer Monte
Carlo model. Finally, using our system and analysis, we were
able to show physical changes between normal forearm skin
and erythema. We consider the experiments presented here as
a proof of principle that it is possible to capture meaningful
spectral measurements using a low-cost spectral camera set up.
We believe our method holds considerable promise for clinical
utility if implemented correctly.
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26. G. Belušič et al., “A fast multispectral light synthesiser based on LEDs
and a diffraction grating,” Sci. Rep. 6, 32012 (2016).

27. R. Shrestha and J. Y. Hardeberg, “How are LED illumination based
multispectral imaging systems influenced by different factors?” Lect.
Notes Comput. Sci. 8509, 61–71 (2014).

28. A. S. Bernat et al., “Cloud-based processing of multi-spectral imaging
data,” Proc. SPIE 10055, 1005505 (2017).

29. S. L. Jacques, “Spectral imaging and analysis to yield tissue optical
properties,” J. Innovative Opt. Health Sci. 2(02), 123–129 (2009).

30. S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temper-
ature for explosive vaporization and internal absorption coefficient
during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775
(1991).

31. S. A. Prahl, “Optical absorption of hemoglobin,” 1996, https://omlc.org/
spectra/hemoglobin/ (5 September 1999).

32. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm
to 200 um wavelength region,” Appl. Opt. 12(3), 555–563 (1973).

33. E. Alerstam, T. Svensson, and S. Andersson-Engels, CUDAMCML-
User Manual and Implementation Notes, pp. 1–33, Department of
Physics, Lund University, Sweden (2009).

Journal of Biomedical Optics 121612-10 December 2018 • Vol. 23(12)

Bolton et al.: Portable, low-cost multispectral imaging system: design, development, validation, and utilization

https://doi.org/10.1117/1.429990
https://doi.org/10.1117/1.2337546
https://doi.org/10.1364/BOE.3.002395
https://doi.org/10.1364/BOE.3.002395
https://doi.org/10.1002/lsm.1900170403
https://doi.org/10.1117/1.3512149
https://doi.org/10.1117/1.3512149
https://doi.org/10.1117/1.1502675
https://doi.org/10.1016/j.ygyno.2005.07.054
https://doi.org/10.1118/1.596777
https://doi.org/10.1364/BOE.1.000157
https://doi.org/10.1117/1.JBO.21.11.110501
https://doi.org/10.1117/1.JBO.19.8.086019
https://doi.org/10.1117/1.JBO.19.8.086019
https://doi.org/10.1016/j.optlaseng.2013.07.020
https://hypermed.com/products/
https://hypermed.com/products/
https://hypermed.com/products/
http://www.iss.com/biomedical/instruments/oxiplexTS200.html
http://www.iss.com/biomedical/instruments/oxiplexTS200.html
http://www.iss.com/biomedical/instruments/oxiplexTS200.html
http://www.iss.com/biomedical/instruments/oxiplexTS200.html
http://www.iss.com/biomedical/instruments/oxiplexTS200.html
http://modulatedimaging.com/products/medical/ox-imager-cs/
http://modulatedimaging.com/products/medical/ox-imager-cs/
http://modulatedimaging.com/products/medical/ox-imager-cs/
https://doi.org/10.1117/12.479509
https://doi.org/10.1117/12.535720
https://doi.org/10.1364/BOE.7.005294
https://doi.org/10.1117/12.2186031
https://doi.org/10.3390/s17051165
https://doi.org/10.1145/2750858.2804282
https://doi.org/10.1145/2750858.2804282
https://doi.org/10.1038/srep32012
https://doi.org/10.1007/978-3-319-07998-1
https://doi.org/10.1007/978-3-319-07998-1
https://doi.org/10.1117/12.2252189
https://doi.org/10.1142/S1793545809000528
https://doi.org/10.1111/php.1991.53.issue-6
https://omlc.org/spectra/hemoglobin/
https://omlc.org/spectra/hemoglobin/
https://omlc.org/spectra/hemoglobin/
https://doi.org/10.1364/AO.12.000555


34. F. J. Bolton et al., “Development and bench testing of a multi-spectral
imaging technology built on a smartphone platform,” Proc. SPIE 9699,
969907 (2016).

35. T. Fitzpatrick, “Conversation about melanin concentration,” Private
Communication, In 1984, Dr. Thomas B. Fitzpatrick, Chair of
Dermatology at Harvard Medical School, told Steven Jacques that
the melanin content in the basal layer of the skin was typically 3-fold
higher than the melanin in the overlying epidermis. This estimate was
used in the skin model of this report (1984).

36. N. MacKinnon et al., “Melanoma detection using smartphone and mul-
timode hyperspectral imaging,” Proc. SPIE 9711, 971117 (2016).

37. J. Spigulis et al., “Smartphone snapshot mapping of skin chromophores
under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9),
091508 (2017).

38. D. Medical, “0354 01214 US DySIS product brochure FINAL,” 2015,
https://www.dysismedical.com/wp-content/uploads/2015/02/0354-01214-
US-DySIS-Product-Brochure-FINAL.pdf (1 November 2017).

39. A. Doronin et al., “Determination of human skin optical properties from
hyper spectral data with deep-learning neural networks (conference
presentation),” Proc. SPIE 10489, 104890U (2018).

40. D. J. Cuccia et al., “Quantitation and mapping of tissue optical proper-
ties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

41. S. Nandy et al., “Quantitative multispectral ex vivo optical evaluation of
human ovarian tissue using spatial frequency domain imaging,” Biomed.
Opt. Express 9(5), 2451–2456 (2018).

42. R. B. Saager et al., “Portable (handheld) clinical device for quantitative
spectroscopy of skin, utilizing spatial frequency domain reflectance
techniques,” Rev. Sci. Instrum. 88(9), 094302 (2017).

43. A. S. Bernat et al., “Scattering and absorption measurements of cervical
tissues measures using low cost multi-spectral imaging,” Proc. SPIE
10485, 104850D (2018).

Frank J. Bolton is a biomedical engineer at Mobile ODT and is
also currently a PhD student at Tel Aviv University. He received his
bachelor’s degree in electrical engineering from the University of
Johannesburg and his MS degree in biomedical engineering from
the University of Cape Town in 2007 and 2011, respectively. Currently,
his research interests include spectral imaging, Monte Carlo modeling,
and cognitive aspects of computing. He is a member of SPIE.

Amir S. Bernat is an algorithm engineer at MobileODT. He received
his MSc in physics from Ben-Gurion University and has experience
performing hardware development at leading tech companies. He
performs R&D on MobileODT’s multispectral LED-based camera
and the optical characterization of MobileODT’s EVA-system,
a smartphone based colposcope. His main professional interest is
combining biophotonics with off-the-shelf imaging devices and inte-
grating analysis algorithms focused on spectral imaging. He is
a member of SPIE.

Biographies for the other authors are not available.

Journal of Biomedical Optics 121612-11 December 2018 • Vol. 23(12)

Bolton et al.: Portable, low-cost multispectral imaging system: design, development, validation, and utilization

https://doi.org/10.1117/12.2218694
https://doi.org/10.1117/12.2222415
https://doi.org/10.1117/1.JBO.22.9.091508
https://www.dysismedical.com/wp-content/uploads/2015/02/0354-01214-US-DySIS-Product-Brochure-FINAL.pdf
https://www.dysismedical.com/wp-content/uploads/2015/02/0354-01214-US-DySIS-Product-Brochure-FINAL.pdf
https://www.dysismedical.com/wp-content/uploads/2015/02/0354-01214-US-DySIS-Product-Brochure-FINAL.pdf
https://www.dysismedical.com/wp-content/uploads/2015/02/0354-01214-US-DySIS-Product-Brochure-FINAL.pdf
https://www.dysismedical.com/wp-content/uploads/2015/02/0354-01214-US-DySIS-Product-Brochure-FINAL.pdf
https://doi.org/10.1117/12.2289149
https://doi.org/10.1117/1.3088140
https://doi.org/10.1364/BOE.9.002451
https://doi.org/10.1364/BOE.9.002451
https://doi.org/10.1063/1.5001075
https://doi.org/10.1117/12.2293816

