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Abstract. Cerebral endovascular neurosurgery has transformed the way we manage cerebrovascular disease.
Several landmark trials have demonstrated the effectiveness of endovascular techniques leading to continued
technological development and applications for various diseases. The utilization of optical technologies and
devices is already underway in the field of endovascular neurosurgery. We discuss the contemporary para-
digms, challenges, and current optical applications for the most common cerebrovascular diseases: carotid ath-
erosclerotic disease, cerebral aneurysms, intracranial atherosclerosis, and dural arteriovenous fistulas. We also
describe needs-based opportunities for future optical applications, with the goal of providing researchers a sense
of where we feel optical technologies could impact the way we manage cerebral disease. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.3.030601]
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1 Introduction
Cerebral endovascular neurosurgery has transformed the way
we manage cerebrovascular disease. The appeal of treating
vascular diseases through minimally invasive intraluminal
techniques without the need for open surgery has led to con-
tinued technological innovation and device development.1 In
the era of evidence-based medicine, several landmark trials
have demonstrated the effectiveness of endovascular tech-
niques for various cerebral vascular diseases. The ISAT trial
in 2005 showed that endovascular aneurysmal embolization
resulted in increased independent survival at 1-year when com-
pared to surgical clipping for ruptured brain aneurysms.2 The
CREST trial in 2012 showed that carotid stenting was effective
and safe when compared to surgical endarterectomy for carotid
artery stenosis.3 Finally, for the management of stroke, the
DAWN trial in 2018 revealed that endovascular thrombectomy
was far superior to standard medical care even for patients 6
to 24 h after stroke onset.4 This has revolutionized stroke care
for patients.

The mounting evidence behind the effectiveness of endo-
vascular treatments and the general desire toward minimally
invasive procedures will likely lead to an even greater role for
endovascular management. The utilization of optical technolo-
gies and devices is already underway in the field of endovascular
neurosurgery. In this paper, we highlight our perspective on cur-
rent challenges faced by clinicians for various cerebrovascular
diseases. Furthermore, we describe existing optical applications
and opportunities for future applications.

2 Carotid Atherosclerotic Disease

2.1 Current Paradigm and Challenges

Stroke is one of the leading causes of morbidity and mortality
in the developed world and 20% to 30% of strokes can be attrib-
uted to carotid atherosclerotic disease.5 The management algo-
rithm for carotid atherosclerotic disease begins with patients
differentiated based on the presence or absence of neurological
symptoms attributed to the stenosis. Subsequently, patients are
grouped based on the degree of radiographic stenosis as mild
(<50%), moderate (50% to 69%), and severe (70% to 99%).
The landmark NASCET trial in 1991 showed that surgical
intervention is highly beneficial for symptomatic patients with
moderate and high-grade stenosis.6 The results of the NASCET
trial remain influential today, and the current American Heart
Association/American Stroke Association recommends carotid
revascularization for symptomatic patients with moderate and
severe stenosis.7

However, there is mounting evidence that the degree of
radiographic stenosis fails to identify those patients with vul-
nerable carotid plaques. Several authors have reported carotid
plaque morphological features, such as degree of lipid content,
thickness of the fibrous cap, calcification, and intraplaque hem-
orrhage could all indicate plaque instability, and thus higher risk
of stroke (Fig. 1).8–10 Identifying these high-risk morphological
features would change the way we treat patients with carotid
stenosis. Current noninvasive imaging techniques include MRI,
CT, and ultrasound. However, no modality has proven reliable
in identifying vulnerable plaques in relation to future stroke
development.11

Furthermore, once the decision is made to treat the carotid
stenosis, physicians have two options: carotid endarterectomy
and carotid artery stenting (CAS). The CREST trial showed
that carotid stenting was associated with increased risk of
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perioperative stroke compared to endarterectomy.3 Authors have
hypothesized that plaque prolapse through the stent-struts as a
major cause of perioperative stroke.12 Currently, imaging modal-
ities are unable to detect this prolapse after stent placement.

2.2 Current Optical Applications

With respect to noninvasive carotid stenosis imaging, authors
have described imaging the plaques with laser ultrasound.13

They report improved vessel wall spatial resolution compared
to CT and the ability to detect calcification. However, the high
acoustic contrast factor between calcium and surrounding tissue
results in shadowing beyond the calcified plaques, leading to an
inability to image beyond the lesion. With respect to invasive
imaging, the United States Food and Drug Administration
(FDA) approved the use of optical coherence tomography
(OCT) for intravascular imaging in 2010. The commercially
available OCT catheter is approved for coronary imaging and
not carotid imaging. Given et al. were the first group to describe
the use of OCT for carotid plaques using saline without proxi-
mal balloon occlusion.14 Since then, several authors have stud-
ied carotid plaque morphology and composition.12,14–22 Others
have described the use of OCT for detecting plaque prolapse and
stent-strut malapposition during CAS (Fig. 1).12,15,19–25

Several limitations of carotid atherosclerotic OCT imaging
exist. Clinicians have described satisfactory imaging without
proximal balloon occlusion, though it is our institutional

experience that the highest quality images are obtained with
proximal occlusion. The occlusion temporarily blocks blood
flow to the brain and consequently has potential for ischemic
injury. We have not encountered complications in our experi-
ence given the short (6 s) acquisition time. Furthermore, the
FDA-approved device is designed for imaging vessels 2 to
3 mm in diameter and the carotid artery is 5 to 8 mm in diameter,
leading to an inability to image the entire vessel in certain
patients. Lesions such as calcium or red thrombus also cause
shadowing.

Intraluminal angioscopic imaging for carotid atherosclerotic
disease has also been described with excellent visualization of
the plaques.26 The major disadvantage for this technology is
the requirement of long-duration proximal balloon occlusion
during acquisition. Newer laser-based angioscopes have showed
promise discerning the different phases of atherosclerotic plaque
evolution in animal models.27

2.3 Future Directions

The calculation of radiographic degree of stenosis to determine
which patients should be treated for carotid disease is likely
rudimentary. Ideally, a noninvasive technology would exist to
image a carotid plaque for features that would predict future risk
of stroke. Shindo et al.28 in 2015 showed that carotid plaque
fibrous cap thickness <130 μm was associated with increased
risk of rupture, and thus any new technology would need superb
spatial resolution. The device would also need to be able to dif-
ferentiate a lipid core, calcium deposits, intraplaque rupture, and
thrombus on the surface of the plaque. A clinical trial to assess
the predictive value of a noninvasive optical device able to detect
vulnerable plaque features would be very appealing to clinicians
given the massive burden of stroke.

A device to detect plaque prolapse through the struts of a
stent during CAS would also be an extremely valuable tool for
clinicians. As described above, we know from the CREST trial
that periprocedural stroke was higher in the CAS group and
some authors have hypothesized that plaque prolapse through
the stent could be the cause.29 The device must have the spatial
resolution adequate to identify plaque on the micrometer scale
and be able to image a vessel with ∼5 to 8 mm diameter. The
detection of plaque prolapse would be done after stent place-
ment by imaging over the stent mesh. If thrombus/prolapse
were detected, periprocedural anticoagulation could be used
to decrease the risk of thromboembolism.

What we envision is a not a new standalone optical technol-
ogy to detect plaque prolapse, rather a combination of several
different technologies into an all-purpose stenting device with
imaging capability (Fig. 2). The device would ideally be com-
prised of a distal embolization protection system, a dual-lumen
transparent angioplasty balloon filled with saline that optical
imaging can be acquired through the balloon, a stent, and a
proximal balloon for occlusion during stent deployment. This
would save a significant amount of time during the procedure,
as several catheters would not need to be exchanged during
optical imaging.

3 Cerebral Aneurysm

3.1 Current Paradigm and Challenges

The prevalence of intracranial aneurysms in the population is
∼3.2%.30 Cerebral catheter angiography remains the gold-

(a)

(b)

Fig. 1 OCT imaging of carotid plaque before and after stenting.
(a) Example of thin fibrous cap (green arrows) over a necrotic core
(blue arrow) before stenting. These are both concerning plaque fea-
tures increasing the future risk of stroke. (b) Poststenting example of
stent-strut malapposition (yellow arrow), plaque prolapse through the
stent (blue arrow), and thrombus over the stent (red arrow). These
features are high-risk for stoke development.
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standard in diagnosing cerebral aneurysms. The anatomic loca-
tion, shape (saccular or fusiform), and size can all be determined
with great accuracy. When dealing with unruptured aneurysms,
this information along with patient-specific characteristics
allows for an estimation of the future risk of rupture for the aneu-
rysm. This information is paramount when deciding whether to
treat an aneurysm or opt for observational management.31 There
is increasing evidence to suggest that aneurysmal wall thickness
and histologic composition are heterogeneous, and these
differences may play a role in aneurysmal pathogenesis and
risk of rupture.32 Current imaging modalities, limited by spatial
resolution, cannot provide information on aneurysm wall
characteristics.

With respect to management, there has been a revolution
in the way we treat aneurysms after the ISAT trial in 2005.2

Most ruptured aneurysms in the United States are now are
treated endovascularly.33 Different techniques for endovascular
aneurysmal embolization are utilized including: coiling, stent-
assisted coiling, and flow-diverting stents (Fig. 3). Although
endovascular treatment has improved patient care, aneurysm
recurrence rates due to coil compaction/recanalization can
approach 20%.34 Similar aneurysmal recurrence rates have been
reported with the use of flow-diverting stents.35 The exact
mechanism behind recurrence remains elusive and some authors
have suggested poor stent-strut apposition against the vessel
wall at the aneurysms neck as a potential cause.36 Along with
the possibility of rerupture of the aneurysm, institutions have

posttreatment imaging protocols to monitor for aneurysmal
recurrence which are very time consuming and very costly.

3.2 Current Optical Applications

The first reported in vivo intraluminal imaging of the deploy-
ment of aneurysm coils and flow-diverting stents was by done
by McVeigh et al.38 They used an angioscope for direct visuali-
zation of the coils and stents in three swine experiments. The
angioscope generated superb images not previously demon-
strated (Fig. 4). Mathews et al.39 were the first to use a cus-
tom-built OCT device to image the cavernous internal carotid
artery in three patients who previously underwent aneurysmal
coiling. They showed that the internal elastic lamina and exter-
nal elastic lamina of the vessel wall could be imaged intracra-
nially with excellent resolution. Guerrero et al.40 examined neo-
endothelialization over a flow-diverting stent placed 8-weeks
prior using a commercially available OCT catheter in the pos-
terior circulation and found that there was concentric neoendo-
thelialization over the stent, except in areas where the stent was
not in contact with the vessel wall.

3.3 Future Applications

Our current knowledge of rupture risk for intracranial aneu-
rysms is limited due to a poor understanding of the natural
history. This is likely due in part to our inability to image the
aneurysm wall and understand the histologic composition.
Knowledge of aneurysm wall composition could have immense
diagnostic potential in evaluating rupture risk for patients, and
thus guide the clinical decision making process. The benefit
solely from invasive aneurysmal wall imaging with an optical
technology would unlikely outweigh the risks. However, the
device could be utilized during diagnostic cerebral angiography
and as an adjunct before/after aneurysmal treatment to provide
information regarding wall histologic features.

(a) (b)

(c) (d)

Fig. 3 Adapted from Ref. 37. Various endovascular techniques
utilized for cerebral aneurysm embolization. (a) Coiling of cerebral
aneurysm. The coils fill the aneurysm and cause flow stasis and sub-
sequent thrombosis. (b) Flow-diverting stent of cerebral aneurysm.
Flow-arrest in the aneurysm will lead to thrombosis of the aneurysm.
(c) Stent-assisted coiling of cerebral aneurysm utilizes both stents and
coils for complex aneurysms. (d) Example of a previously coiled aneu-
rysm with neoendothelialization (yellow-line) excluding the aneurysm
from the systemic circulation. If an optical device could show an aneu-
rysm has healed, we could eliminate costly follow-up imaging.

Fig. 2 Carotid stenosis treated using a novel carotid stenting device
with integrated optical technology. (A) Distal embolization protection
system that captures all possible blood-clots during the procedure
to prevent strokes. (B) Saline filled angioplasty balloon used to first
widen the narrowed artery. An optical imaging catheter images the
plaque through the dual lumen balloon after angioplasty. (C) The
carotid atherosclerotic disease that is responsible for artery narrowing
and producing blood-clots, which cause strokes in the brain. (D) The
carotid stent, which will be placed to keep the narrowed artery open.
(E) Proximal dual lumen balloon that will be inflated at various times
during the procedure for proximal blood-flow arrest to prevent blood-
clots from traveling to the brain. ICA, Internal carotid artery; ECA,
external carotid artery; CCA, common carotid artery.
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A device that can be navigated intracranially and confirm
acceptable stent-strut apposition against the vessel wall during
aneurysm embolization would be extremely valuable as an
adjunct during aneurysm embolization. The lack of neoendothe-
lialization over a stent is thought to be a risk factor for aneurysm
recurrence. Intraprocedural knowledge of stent malapposition
could guide the clinician to reposition the stent. Furthermore,
evidence of complete neoendothelialization of stents could also
help direct management with respect to duration of antiplatelet
medications. Blood-thinners are needed after stent deployment
because stents are thrombogenic. A stent that is completely
excluded from the vessel lumen due to neoendothelialization
would of course be at a decreased risk for thromboembolic
events, and patients may not require blood-thinning medication.
Knowledge on whether an aneurysm has been excluded from
the cerebral vasculature due to complete aneurysm neck
endothelialization after stenting/coiling could also eliminate
the need for routine follow-up imaging looking for recurrence
(Fig. 3). The above concepts all fall under the umbrella of “aneu-
rysmal healing” after treatment, and any technology able to
assess aneurysmal healing would be a powerful tool.

There are very few reported cases of endovascular imaging of
intracranial vessels. One of the major obstacles for designing
any device for intracranial endovascular imaging is navigating
the tortuous cerebral vessels. The carotid siphon is particularly
challenging. There have been several case reports of an inability

to navigate catheters beyond the siphon and having the hardware
fail during navigation. In our own institutional experience, we
can confirm the difficulty of navigating intracranially. Models
do exist to replicate the tortuous anatomy of the carotid siphon
for future device testing.41

4 Intracranial Atherosclerosis

4.1 Current Paradigm and Challenges

Intracranial atherosclerosis (ICAS) is also an important etiology
of stroke, especially in Asian populations.42 The landmark
WASID trial in 2005 studied medical management for patients
with symptomatic large vessel ICAS of 50% to 99%.43 They
compared Warfarin with Aspirin and found the primary end-
point of stroke, brain hemorrhage, or death from nonvascular
causes occurred in 22% of patients in both groups. These poor
outcomes lead the SAMMPRIS trial investigators in 2011 to
compare medical management with intracranial stenting for
patients with symptomatic large vessel ICAS of 70% to 99%.44

The trial was halted after interim analysis showed patients
undergoing stenting had a 30-day perioperative stroke rate of
15%. The majority of strokes in the SAMMPRIS trial occurred
due to adjacent arterial perforator occlusion. One proposed
mechanism of perforator infarct during intracranial stenting is
the displacement of unstable or complex plaques into adjacent
perforating vessels.45

4.2 Current Optical Applications

There have been no optical technologies directly utilized in the
diagnosis or treatment of ICAS. Alles et al.46 were the first to
image ex vivo aortic tissue with an optically transmitted acoustic
beam. They demonstrated side-branch blood vessels with great
accuracy (Fig. 5).

4.3 Future Applications

As described above, the majority of strokes in the SAMMPRIS
trial occurred due to adjacent arterial perforator occlusion.
The ability to directly visualize perforators before stent place-
ment would greatly improve the safety of intracranial stenting.
The perforators coming off the basilar artery or middle cerebral
artery range between 80 and 1400 μm in size and thus the device
to image these vessels would need excellent spatial resolution.
Furthermore, the detection of vulnerable plaque features could
be a warning sign for the interventionalist and help decrease the
perioperative stroke risk. If the risk of perforator occlusion were
deemed high, the decision could be made not to place a stent.
In other circumstances, different stent types (open/closed cell)
could be used depending on plaque morphology. Future trials
must select the appropriate patients for intervention, and a
device that can identify both vulnerable plaque features and
adjacent perforating vessels would certainly help identify these
patients.

5 Concept
Arteriovenous fistulas are abnormal connections between ar-
teries and veins. In the brain, dural arteriovenous fistulas (dAVF)
acquired vascular malformations with arterial feeders from
extracranial arteries. The venous system is a low-pressure sys-
tem, and arterial pressure can cause symptoms varying from
tinnitus (ringing in the ears) to fatal ruptures. With the evolution
of endovascular neurosurgery, the first-line treatment option for

(a)

(b)

Fig. 4 Adapted from Ref. 38. Angioscope images of aneurysm coiling
and stent placement. (a) Angioscope direct visualization of coil place-
ment into the vessel. (b) Direct visualization of stent-assisted coiling
of vessel. The coils can be seen through the stent mesh. Satisfactory
apposition of the stent-struts against the vessel wall can also be
visualized.
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most dAVF is now endovascular embolization.47 Trans-arterial
embolization techniques using glue are often very expensive, in
the range of $20,000 per procedure, and may require multiple
procedures.

We envision an optical device that can both image the arterial
feeders to the fistula and ablate these arteries using a laser
(Fig. 6). First, the device would be navigated transvenously
to the site of the dural AVF. Next, through a transparent
dual-lumen balloon, optical imaging is undertaken to identify
the exact location of arterial feeders into the dural sinus.
With the knowledge of the exact spatial position of the feeding
arteries, laser ablation of the feeders is completed under image
guidance through the saline-filled balloon. This could eliminate
the need for expensive glue embolization material and multiple
treatment sessions with the use of a single device.

6 Conclusion
Endovascular neurosurgical management of cerebrovascular
disease will continue to expand. Optical devices have begun
to play a role in diagnosis and treatment. We believe there
remains significant opportunity for improvement of current
optical systems and techniques, along with the development of
devices to treat these complex diseases.
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