
Handheld multispectral imager for quantitative skin
assessment in low-resource settings

Luigi Belcastro,* Hanna Jonasson, Tomas Strömberg, and Rolf B. Saager
Linköping University, Department of Biomedical Engineering, Linköping, Sweden

Abstract

Significance: Spatial frequency domain imaging (SFDI) is a quantitative imaging method to
measure absorption and scattering of tissue, from which several chromophore concentrations
(e.g., oxy-/deoxy-/meth-hemoglobin, melanin, and carotenoids) can be calculated. Employing
a method to extract additional spectral bands from RGB components (that we named cross-
channels), we designed a handheld SFDI device to account for these pigments, using low-cost,
consumer-grade components for its implementation and characterization.

Aim: With only three broad spectral bands (red, green, blue, or RGB), consumer-grade devices
are often too limited. We present a methodology to increase the number of spectral bands in
SFDI devices that use RGB components without hardware modification.

Approach:We developed a compact low-cost RGB spectral imager using a color CMOS camera
and LED-based mini projector. The components’ spectral properties were characterized and
additional cross-channel bands were calculated. An alternative characterization procedure was
also developed that makes use of low-cost equipment, and its results were compared. The device
performance was evaluated by measurements on tissue-simulating optical phantoms and in-vivo
tissue. The measurements were compared with another quantitative spectroscopy method: spatial
frequency domain spectroscopy (SFDS).

Results: Out of six possible cross-channel bands, two were evaluated to be suitable for our
application and were fully characterized (520� 20 nm; 556� 18 nm). The other four cross-
channels presented a too low signal-to-noise ratio for this implementation. In estimating the
optical properties of optical phantoms, the SFDI data have a strong linear correlation with the
SFDS data (R2 ¼ 0.987, RMSE ¼ 0.006 for μa, R2 ¼ 0.994, RMSE ¼ 0.078 for μ 0

s).

Conclusions: We extracted two additional spectral bands from a commercial RGB system at
no cost. There was good agreement between our device and the research-grade SFDS system.
The alternative characterization procedure we have presented allowed us to measure the spectral
features of the system with an accuracy comparable to standard laboratory equipment.
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1 Introduction

Biomedical imaging using light can be a powerful, noninvasive, and inexpensive tool to detect
biological markers associated with metabolic functions or diseases.1 Spectral imaging can be
used to gain structural information about the tissue from its diffuse scattering contrast and chemi-
cal information by analyzing its absorbance spectrum. Spatial frequency domain imaging (SFDI)
is a technique to perform quantitative spectral measurements over an adjustable field of view
(FOV) (in the order of 1 to 10 cm), and it is rapidly gathering attention from the scientific
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community.2,3 The main advantage of SFDI compared to other diffuse optical techniques is the
ability to separate the effects of scattering and absorption based on their spatial frequency-
dependent effect on reflectance. It also allows one to quantitatively measure chromophores con-
centrations in turbid media, such as tissues and tissue-simulating phantoms.4 Another advantage
of this technique is its depth sensitivity depending on the spatial frequencies employed, which
allows one to reconstruct a three-dimensional map of optical properties.5 SFDI has been
employed in clinical studies for a number of different applications, such as vascular assessment
in patients with diabetes,6 evaluation of burn wounds severity,7,8 enhancement of cancer detec-
tion in vitro,9–11 and skin characterization for cosmetic surgery.12–14

In several of these applications, measuring only melanin and oxy-/deoxyhemoglobin levels is
not sufficient as it is necessary to consider the presence of other chromophores (e.g., met-
hemoglobin in burn wounds and carotenoids), which may confound the interpretation of the
spectral data. For this reason typical color cameras, which only provide spectral information
from three wide bands in the visible range (i.e., red, green, and blue, commonly known as
RGB), are not suitable as they can introduce severe underestimation of other important bio-
markers (melanin and hemoglobin species).14,15 A number of solutions to improve the spectral
sensitivity of the SFDI system have been proposed. However, these involve building customized
light sources16–18 or using multispectral cameras/color filters.7,19,20 A different kind of approach
is provided by a technique called spatial frequency domain spectroscopy (SFDS), where the
imaging system is replaced by a spectrometer, providing very high spectral resolution at the
cost of a greatly reduced FOV and spatial resolution.15,21,22

A non-negligible aspect of spectral imagers is the cost, and typical optical components and
laboratory instrumentation are quite bulky and expensive (in the order of several thousands of
dollars). In order to deploy them in clinical or low-resource settings, it is preferable to employ
low-cost, portable components. We present an approach to improve the spectral resolution of a
nonmodified commercial RGB projector and an RGB CMOS camera in the development of a
low-cost compact SFDI system. The signal in the three main channels in such systems (RGB) is
given by the combination of the light spectrum and the characteristic of the three color filters.
As the spectra of the LEDs are several tens of nm wide, some of the spectral components from
one LED (e.g., green) can be also detected by the other color channels in the camera (e.g., red
and blue). By shining one LED at a time, the amount of light for all combinations of LEDs/filters
was measured, and the spectral overlap was characterized, obtaining up to six additional spectral
bands that we will refer to as cross-channel bands. The performance of the system was compared
to a research-grade SFDS system, by measuring the optical properties of Intralipid® phantoms
and in vivo tissue.

2 Materials and Methods

2.1 Instrument Design

The developed quantitative imaging device consists primarily of two commercially available
components controlled by a computer: a digital LED miniprojector (Innoio, SmartBeam) and
a 1.3-MP USB2 color camera (PointGrey, Firefly MV) with a C-mount 12-mm lens (Edmund
Optics, UC series). The camera and projector are mounted in a fixed position relative to each
other, as shown in Fig. 1, so that they have essentially the same focal plane and FOV. In this
setup, we have a working distance of 15 cm, which gives us an FOVof ∼10 × 5 cm. We are not
able to control the projector digital micromirror device directly, so it was employed as a second
monitor where the spatially modulated patterns are projected full-screen as images on it. This is a
common practice in other low-cost SFDI systems.22,23 The camera was controlled with the soft-
ware development kit (SDK) provided by the manufacturer (PointGrey, FlyCapture SDK), and
the whole acquisition procedure was controlled with Python scripts. Since it is not possible to
synchronize the camera with the projector, the exposure time during acquisition should be a
multiple of the inverse of the frame-rate (1∕60 Hz) in order to avoid flickering in the image
intensity.23 In order to block specularly reflected reflected light, two cross-polarisers have been
applied in front of the camera, and the projector rotated by 90 deg with respect to each other.
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2.2 Spectral Characterization

The spectral specifications of these devices are not known, and there might also be variability
between components in the same series. For this reason, it is necessary to characterize them
individually, to know their exact spectral features. The main spectral bands and the cross-channel
bands have been characterized using two different approaches, one using laboratory equipment
and another using alternative low-cost components. This way it was possible to compare the
results obtained with the two methods and determine if the low-cost approach is reliable enough
to be used in research.

2.2.1 Laboratory approach

First, an intensity calibration of a spectrometer (Avantes, ULS2048-RS-USB2) was performed,
using a calibrated broadband light source (Avantes, Avalight-HAL-CAL-Mini) of which we
know the exact intensity over the emission spectrum. To characterize the LEDs, pure red, green,
and blue images, respectively, were projected on a 99% reflectance target (Labsphere, calibrated
reflectance standard), the reflected light was captured with an optic fiber, and the spectral
signature was measured with the intensity calibrated spectrometer (Fig. 2). The spectrum of
the three LEDs was normalized to the maximum value of all three bands, in order to preserve
the relative intensity ratios.

To measure the characteristic of the camera filters, the following setup was used (Fig. 3): an
optic fiber was used to collect light from a light source and concentrate it on a small spot, pointed
directly at the camera. A transmission holographic grating (500 grooves/mm) was then placed in

Fig. 2 Schematics of the setup used to calibrate the projector: each individual LED shines light on
a 99% reflectance reference. The reflected light is captured by an optic fiber and its spectrum is
measured with an intensity calibrated spectrometer.

Fig. 1 Schematic of the acquisition device. Amini projector is used to shine a sinusoidal pattern on
the tissue, then a CMOS digital camera captures the reflected light. Both components are con-
trolled by a computer, and cross-polarizers are placed in front of them to remove specular reflected
light.
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front of the camera to separate the wavelengths of the light along a line, and we have acquired
images to process. First, a mercury lamp (StellarNet Inc., SL2 calibration lamp) was used to
calibrate the wavelengths, as its spectrum has several discrete peaks at known wavelengths that
can be used as a reference. To calibrate the intensity, the calibrated broadband white light source
was used (Avantes, Avalight-HAL-CAL-Mini). To obtain the characteristic of the red, green, and
blue filters on the CMOS sensor of the camera, the intensity profiles of the diffracted light have
been analyzed in the red, green, and blue channels of the white light pictures, normalizing their
value to the maximum value in all three channels.

Finally, the spectral features of the LEDs and camera that were obtained from this charac-
terization procedure have been combined. The three LED spectra have been multiplied by each
of the three color filters function, obtaining this way nine different combinations (the three main
color bands and six cross-channel bands).

2.2.2 Low-cost approach

In the second procedure, the intensity of the cross-channels has been measured directly with the
following experimental setup (as presented in Fig. 4). A transmission grating was placed in front
of the projector, and a black image with a 1-px vertical line of a pure color (red, green, or blue)
was projected on a 99% reflectance target. The grating diffracts the wavelengths horizontally
allowing us to interpret the spectral distribution of each LED on the camera directly. The light
intensity profiles in each of the color channels of the acquired pictures are a measure of the
combined effect of the color filter function and the LED spectrum. A wavelength calibration
procedure was performed using two laser pointers of known wavelengths (532 and 650 nm),
in a manner similar to the mercury lamp in Sec. 2.2.1, and the signals have been normalized
to the maximum value of the each of the three primary LED channels for comparison.

2.3 SFDI Acquisition Procedure

To perform SFDI, multiple sinusoidal patterns are projected sequentially on the tissue, and the
remitted light (i.e., diffuse reflectance) is measured using the camera. Most commercial projec-
tors, however, use an internal gamma correction to match the nonlinear response of the human
eye, and they intentionally alter the brightness levels so that the output is nonlinear. Since pure
sinusoidal patterns would be distorted by this gamma correction, it has been characterized and
compensated, using the procedure described in previous papers.22,23 For the following data
processing steps, it is necessary to measure the amplitude of the AC component of the modulated
reflectance. To do so, we employ a multiphase demodulation technique in the spatial domain.4

Fig. 3 Schematics of the setup used to calibrate the camera: a light source is shone with an optic
fiber through a grating, which separates the light in its spectral components along a line. The inten-
sity of the diffracted light is then measured with the camera. A mercury lamp is used for wavelength
calibration and a broadband light for intensity calibration.
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This technique requires the acquisition of three sinusoidal signals with a spatial phase shift of
0 deg, 120 deg, and 240 deg. A simple GUI was developed to control the camera parameters
(such as the exposure time), the number of spatial frequencies (fx) to generate (at least two) and
to start the acquisition in either single acquisition mode or continuous acquisition mode. In this
study, patterns at four spatial frequencies (0, 0.0333, 0.05, 0.1 mm−1) have been employed. For
each fx, images were projected at each RGB color and three phases, sequentially, for a total of
nine images per fx. Then, the individual color channels from the camera needed for our appli-
cation (3 RGB channels and 2 cross-channels) were extracted and saved in grayscale in uncom-
pressed 8-bit.bmp format. The total acquisition time for an entire sequence was between 10 and
20 seconds, depending on the camera exposure time. The system has not been optimized for
speed, however.

2.4 Data Processing

The data were processed using the methods described in Ref. 4. The first step to perform is to
demodulate the images to obtain the AC amplitude of the signal. Equation (1) has been applied
pixel by pixel, where I1, I2, and I3 are the images at a specific fx and spectral band, to obtain
the AC amplitude (MAC):

EQ-TARGET;temp:intralink-;e001;116;272MAC ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI1 − I2Þ2 þ ðI2 − I3Þ2 þ ðI3 − I1Þ2

q
: (1)

The second step is the calibration. An SFDI dataset has been acquired under the same exper-
imental conditions on a reference calibration phantom with known optical properties. The aim is
to decouple the diffuse reflectance (Rd) of the tissue from that of the light source intensity (I0)
and the transfer function of the instrument (MTFsystem). To obtain the diffuse reflectance of
the tissue, Eq. (2) was applied at each λ and fx:

EQ-TARGET;temp:intralink-;e002;116;166Rd;tissue ¼
MAC

MAC;ref
· Rd;ref ; (2)

whereMAC andMAC;ref are the demodulated amplitudes from the tissue and our reference phan-
tom and Rd;ref is the theoretical reflectance value of the phantom, calculated from the reference’s
known optical properties using a forward model of light transport. The model used was a white
Monte Carlo model.24

Fig. 4 Schematic of the setup used for characterizing the system directly. The projector is used to
shine a vertical line of each individual LED color on a 99% reflectance target. The light passes
through a grating, which separates its spectral components, and it is captured by the camera.
A wavelength calibration is then performed using two laser pointers, in a way similar to Fig. 3.
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The third step is the fitting for optical properties. An inverse solver approach was used to
minimize errors between the measured Rd;tissuefðxÞ and forward Monte Carlo simulations
of RdðfxÞ for specific pairs of μa and μ 0

s. In this investigation, an iterative Nelder–Mead
optimization algorithm (from the scipy.optimize library) then searches in the parameters’ space
for a global minimum that minimizes the difference and gives as a result a pair of (μa, μ 0

s)
values.

2.5 Optical Phantom Validation Measurements

The device performance was first tested on tissue-simulating liquid phantoms and compared to a
validated SFDS system,21,25,26 used as a reference. Sixteen phantoms were manufactured by
combining four different concentrations of Intralipid®, which was used as a scattering agent,27,28

and four concentrations of India ink, which was used as an absorber.27,29 The Intralipid® con-
centrations were (0.5%, 1%, 1.5%, 2%), giving measured values of μ 0

s comprised in the range 0.5
to 2.5 mm−1 @625 nm. The India ink was first sonicated to ensure an homogeneous distribution
of the pigment and was added in concentrations of (13, 27, 40, and 53 mg∕L), giving measured
absorption values in the range 0.025 to 0.25 mm−1 @625 nm. A dataset of 60 images (three
phases, four spatial frequencies, and five spectral bands) was acquired on all 16 phantoms.
Analogously, a dataset of 15 signals (three phases, five spatial frequencies, spanning the spec-
trum range 400 to 700 nm) was acquired in parallel with the SFDS system. The spatial frequen-
cies used in the SFDS system are (0, 0.05, 0.1, 0.15, 0.2)mm−1. Under the same experimental
conditions, two datasets were also acquired for calibration with the SFDI and SFDS systems on a
reference silicon phantom with known optical properties. The exposure time was adjusted for
each measurement so that the measured signal would use the entire dynamic range of the camera
while not causing the sensor to saturate.

2.6 In Vivo Measurements

In vivo measurements were performed on healthy skin of a volunteer with both the SFDI and
SFDS system. Written informed consent was obtained from the subject. The arm was laid on
an armrest, and a dataset was acquired first with the SFDI system and afterward with the
SFDS system on the forearm of the subject and on a calibration silicon phantom, like in
sec. 2.5. The measurements were performed with the approval of Linköping ethics committee
(Dnr 2018/282-31).

3 Results

3.1 Characterization of Spectral Bands

The nine spectral bands characterized in Sec. 2.2 are presented in Fig. 5. The naming con-
vention for the spectral bands uses two letters: the first one is referring to the spectral band
emitted by the projector (red, green, or blue) and the second one to the filter band of the camera
(likewise, red, green, or blue). The solid line is the data derived from the laboratory approach
(Sec. 2.2.1), whereas the dashed line is derived from the low-cost approach (Sec. 2.2.2).
Based on the data in Fig. 5, two of the cross-channel bands (GB and GR) were determined
to be the strongest candidates for our application in term of signal-to-noise ratio (SNR). The
BG band also had an intensity level comparable to the GR band, but the absorption of blue light
in tissue is very strong, which further degrades the actual SNR of the band. For this reason, we
decided not to include the BG band in this study. The signal from the remaining three bands
(BR, RB, and RG) was too weak to be useful in this implementation. The central wavelength
(λ0) and full width half maximum (FWHM) of the nine bands were calculated and the main five
are reported in Table 1. Since the spectral bands might have a complex shape, these values were
calculated by doing a weighted average of the signals, rather than by fitting to a Gaussian
function.
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3.2 Optical Phantom Validation Measurements

The data were processed with the procedure describe in Sec. 2.4, obtaining a map of μa, μ 0
s at

five wavelengths with the SFDI system and the whole optical spectrum in a single central loca-
tion with the SFDS system. Since the phantoms are homogeneous, an average of the optical
properties over the whole FOV of the SFDI system was calculated in order to compare it with
the SFDS data. Likewise, since the SFDS data are a continuous spectrum, in order to compare it
with the SFDI data, spectral properties at the five wavelengths were emulated from the SFDS
data using a method described in a previous publication.14 The comparison can be seen in Fig. 6,
where a linear regression between the values of μa, μ 0

s in SFDI and SFDS data is calculated. The
color-coded clusters on the graph represent the four different levels of absorption (upper image)
or scattering (lower image), which were measured on the phantoms. Each cluster consists of 20
data points, corresponding to the four phantoms that have the same optical property (e.g., same
μa, but different μ 0

s), measured at the five spectral bands. The R2 and root mean square error
(RMSE) values are reported (R2 ¼ 0.987, RMSE ¼ 0.006 for μa, R2 ¼ 0.994, RMSE ¼ 0.078

for μ 0
s).

Fig. 5 Plot of the nine combinations of the LED and camera spectral features (three main bands
on the diagonal and six cross-channel bands). The solid lines are the signals calculated with
the laboratory approach, and the dashed line is calculated with the low-cost approach. The rows
represent the LEDs color (from the top: blue, green, and red) while the columns represent the
camera filters (from the left: blue, green, and red).

Table 1 List of the five main spectral combinations in this study, obtained with the two
approaches. The values are expressed as (λ0 � 1

2FWHM). The naming convention is a letter that
indicates the color of the LED followed by a letter that indicates the color of the filter.

Band Laboratory approach Low-cost approach

BB (nm) 458� 12 465� 18

GB (nm) 520� 20 519� 25

GG (nm) 536� 31 535� 33

GR (nm) 556� 18 561� 29

RR (nm) 626� 10 617� 20
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Fig. 6 Comparison of the measured values of (a) μa and (b) μ 0
s between the SFDI and the SFDS

systems in the five bands, measured on optical phantoms with four levels of absorption and
scattering. The dashed lines are the linear regression lines (R2 in figure), the dotted lines are
the unity lines.

Fig. 7 Comparison of the (a) μa and (b) μ 0
s values measured in vivo on human forearm skin using

SFDI (red circles) and SFDS (dashed line). Five data points are then emulated from the SFDS
data, by doing a weighted average over the five bands (blue diamonds).
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3.3 In Vivo Measurements

The data from the in vivomeasurements were processed in a similar way at the same three spatial
frequencies 0, 0.05, 0.1 mm−1 both for SFDI and SFDS. This choice of a subset of the acquired
fx was made considering the layered nature of skin. This way we are sampling the same volume
of tissue at each fx with both systems. The results are shown in Fig. 7. The SFDI data points
(red circles) are averaged spatially over the entire image. The SFDS spectrum (dashed line) is
averaged spectrally for comparison, by doing a weighted average over the five bands of interest.
We obtain five data points (blue diamonds), which emulate what the SFDS system would detect
over a broad band, as described in a previous publication.14

4 Discussion

We have presented a method to extract additional spectral bands from commercial devices, by
taking advantage of the spectral cross-talk between the RGB channels of the light source and the
detector. This will introduce a significant improvement in the performance of these low-cost
devices as spectral imagers, without the need to modify them or employ additional components.
In the presented device, the additional cross-channels are situated in the spectral range 500 to
600 nm, which is also where key absorption features of oxy- and deoxyhemoglobin are. This
suggests that an improvement in the measurement of blood oxygen saturation and differentiation
from other tissue chromophores in the visible regime can be expected.14,30 We also have pre-
sented two different methods to characterize the SFDI system: one relying on standard laboratory
equipment (price range on the order of $10,000) and a second one, which makes use of common,
nonexpensive components (on the order of $10 or less). We can see in Fig. 5 that the spectral
resolution of the second method is slightly worse (we have measured a difference in FWHM up
to 20 nm). However, the data show good correspondence when compared to the first method.
This could represent a reasonable alternative approach for system characterization in low-
resource environments, where laboratory equipment is not readily available.

The data in Figs. 6 and 7 show that there is a good correspondence between the values mea-
sured with the SFDI and the SFDS system. The μa values are clustered in four distinct regions,
corresponding to the level of absorption, with the data becoming more noisy at higher absorp-
tion. The μ 0

s values are also clustered in four groups corresponding to the levels of scattering,
even though they are more spread out and overlapping because the scattering changes with the
wavelength, following a power law of the kind: μ 0

sðλÞ ¼ aλ−b. In the physiological range of
optical properties values that we have considered (μa: 0.05 to 0.25 mm−1, μ 0

s: 0.5 to 5 mm−1),
the measurements are accurate enough to perform SFDI and measure absorption and scattering
on skin in vivo, as shown in Fig. 7. Regarding the in vivo measurements, some considerations
should be made on the appropriate choice of spatial frequencies. When using a higher fx, light
penetrates less in the tissue and a more superficial region is sampled. This has little effect when
measuring a target with homogeneous optical properties, as was shown in Fig. 6 where we per-
form measurements on liquid phantoms using two different sets of fx and obtain highly agreeing
values. However, the choice of spatial frequencies is important for the in vivo data, due to the
layered nature of the tissue. Therefore, processing these data with the same set of spatial frequen-
cies will minimize differences between the two systems due to the effect of spatial frequencies on
sampling depth in the layered tissue.

Another issue that is relevant for clinical use is the correction for the curvature of the tissue,
which introduces an error in the estimation of optical properties. In context of this study, we have
measured a flat region of the arm in vivo to minimize this problem. However, methods for surface
profile correction have been developed for SFDI techniques and can be easily implemented in an
imaging system, such as what is presented here.31–33

The device is light and small and currently needs to be plugged in a computer or laptop, but
further improvements are possible. It can be made self-contained by setting up an appropriate
developing environment on a small board (e.g., Raspberry Pi) since all code is written in Python
and is cross-platform. We have arbitrarily selected this camera mainly because of the ease of
control via software with its proprietary SDK, but even smaller and less expensive options are
available on the market. Integration of the system with a smartphone (using the phone camera) is
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also a possibility. Likewise, we have chosen the projector among a few other alternatives
because it was the one with the least amount of internal color correction and had a green
LED with a wide spectrum, which was preferable for extracting the cross-channel bands.
Its price range is around $400, but cheaper and higher resolution portable projectors can be
employed.

5 Conclusion

We have presented the design and characterization process of a low-cost SFDI system that uses
nonmodified commercial components. We have also presented an alternative characterization
procedure that makes use of low cost components (transmission grating, laser pointers), as
opposed to research-grade instrumentation (spectrometer, calibrated light source). In addition
to this, we have developed an approach to extract additional wavelengths from a common
RGB system without the need for customized light sources or filters, improving this way its
spectral resolution at no cost. These new methodologies will contribute to the development
of SFDI in low-resource settings. This will be beneficial both from a clinical perspective, giving
clinicians an inexpensive and reliable tool for skin diagnosis, and from a research perspective,
promoting the use of the SFDI technique and increasing the possibilities for cooperation and
innovation in the field of spectral imaging.
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