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Abstract

Significance: Biomedical optics system design, image formation, and image analysis have pri-
marily been guided by classical physical modeling and signal processing methodologies.
Recently, however, deep learning (DL) has become a major paradigm in computational modeling
and has demonstrated utility in numerous scientific domains and various forms of data analysis.

Aim: We aim to comprehensively review the use of DL applied to macroscopic diffuse optical
imaging (DOI).

Approach: First, we provide a layman introduction to DL. Then, the review summarizes current
DL work in some of the most active areas of this field, including optical properties retrieval,
fluorescence lifetime imaging, and diffuse optical tomography.

Results: The advantages of using DL for DOI versus conventional inverse solvers cited in the
literature reviewed herein are numerous. These include, among others, a decrease in analysis
time (often by many orders of magnitude), increased quantitative reconstruction quality, robust-
ness to noise, and the unique capability to learn complex end-to-end relationships.

Conclusions: The heavily validated capability of DL’s use across a wide range of complex
inverse solving methodologies has enormous potential to bring novel DOI modalities, otherwise
deemed impractical for clinical translation, to the patient’s bedside.
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1 Introduction

The scientific value of monitoring biological tissues with light was recognized many centuries
ago, as reported in published works dating as early as the late 1800s for monitoring brain
hemorrhage, 1 as well as the early 1900s for imaging breast cancer2,3 and performing tissue
oximetry.4 Since then, optical imaging techniques have greatly benefited numerous biomedical
fields. Particularly, a wide range of optical techniques provide unique means to probe the func-
tional, physiological, metabolic, and molecular states of deep tissue noninvasively with high
sensitivity. As scattering is the predominant phenomenon ruling light propagation in intact
biological tissues, the photons harnessed to probe the tissue have typically experienced multiple
scattering events (or diffusion); therefore, this field can be broadly classified as diffuse optical
imaging (DOI). Applications of DOI range from macroscopic extraction of optical properties
(OPs), such as absorption and scattering, for further tissue classification and 2D representa-
tions,5,6 to 3D tomographic renderings of the functional chromophores or fluorophore within
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deep tissues.7–10 Despite the numerous benefits of DOI, its diverse implementations can still be
challenging due to the necessity of computational methods that model light propagation and/or
the unique contrast mechanism leveraged to be quantitative. Hence, numerous implementations
in DOI require a certain level of expertise while also being dependent on the optimization of
intrinsic parameters of these computational models—limiting their potential for dissemination
and, hence, translational impact.

Meanwhile, over the last decade, the implementation of data processing methodologies,
namely deep learning (DL), promises the development of dedicated data-driven, model-
free techniques with robust performances and user-friendly employability. DL methods are
increasingly utilized across the biomedical imaging field, including biomedical optics.11 For
instance, molecular optical imaging applications from resolution enhancement in histopathol-
ogy,12 super-resolution microscopy,13 fluorescence signal prediction from label-free images,14

single-molecule localization,15 fluorescence microscopy image restoration,16 and hyperspectral
single-pixel lifetime imaging17 have been enhanced by recent developments in DL. Following
this trend, DL methodologies have also been recently used for DOI applications. In this review,
we provide a summary of these current efforts. First, we introduce the basic technical concepts of
DL methods to be addressed and the commonly employed frameworks. The subsequent sections
will describe the architectures developed or adapted for different macroscopic DOI applications,
including 2D retrieval of OPs, macroscopic fluorescence lifetime imaging (MFLI), single-pixel
imaging, diffuse optical tomography (DOT), fluorescence, and bioluminescence molecular
tomography.

2 General Overview of Deep Learning Frameworks

This section briefly overviews technical DL concepts that are addressed throughout the article.
For those new to DL, the authors suggest prior reading for maximized accessibility of the topics
discussed herein.18,19 Also for readers more interested in the mathematical links between
classical optical computational image formation and DL methods, we refer them to Ref. 20.

DL is a special class of machine learning (ML) algorithms that incorporate multiple “hidden
layers” (i.e., layers other than input and output) aimed at extracting latent information
(commonly referred to as “features”) of higher and higher levels of abstraction/nonlinearity
(interactive visual supplement available elsewhere21). Such an approach was proposed as early
as 1943 by Pitts and McCulloch,22 who developed a computer model inspired from the human
brain neural network. This development was followed by the implementation of models with
polynomial activation functions, aimed at inducing nonlinear relationships between output and
input/set of inputs and carrying forward of the best statically features to the next layers, by
Ivakhnenko.23 Then Fukushima and Miyake24 reported on the first “convolutional neural net-
work” (CNN), neocognitron, that was based on a hierarchical, multilayer architecture. These
concepts were improved upon by the incorporation of backpropagation methodologies during
model training. LeCun25 combined DL with backpropagation to enable the recognition of hand-
written digits. Meanwhile, computational power was steadily increasing with the critical devel-
opment of GPUs (graphics processing units). The adoption of GPUs enabled the development of
fast DL models that were computationally competitive with other ML techniques such as support
vector machines (SVM)26 and linear/logistic regression. Since then, DL has known continued
growth with the notable development of ImageNet,27 which heralded the pairing of DL and big
data. With the increased computing speed, it became clear that DL had significant advantages in
terms of efficiency and speed. In particular, the computer vision community has embraced the
use of CNNs after the breakthrough results of AlexNet28 in the large-scale visual recognition
challenge (ILSVRC) of 2012. Since then, a large variety of models exhibiting state-of-the-art
performance have been developed and increasingly improved upon for countless applications in
computer vision—including classification, object detection, and segmentation. Today, when
designing a DL-based solution to a given problem, consideration should be given to the type
of network that is chosen, that network’s architecture, and the way in which the network is
trained. The remainder of this section provides a layman introduction for these three key
elements.
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2.1 Neural Network Types

The simplest form of artificial neural networks (ANN) still commonly employed is multilayer
perceptron (MLP). The network architecture of an MLP is composed of at least three perceptron
layers: an input layer, a hidden layer, and an output layer. After the input layer, each node of the
MLP is passed through a nonlinear activation function selected a priori. The combination of
multiple layers and nonlinear activations enables MLPs to compute nontrivial problems using
only a small number of nodes.29 In MLPs, all neurons in a layer are connected to all activations in
the previous layer, each of which is referred to as a fully connected layer (FC layer). This FC
nature can become a disadvantage as the total number of parameters can grow extremely large
with increased model depth (number of hidden layers) and/or width (number of neurons at each
layer). For instance, an MLP designed for a modestly sized 2D image input will possess many
parameters, which is problematic for both increased overfitting potential and memory
limitations.30 Moreover, many applications of interest in biomedical imaging have two or more
dimensions. The need to flatten these images into 1D input for MLPs often leaves achieving even
modest levels of spatial equivariance computationally problematic. Indeed, MLPs inherently
lack the capability to model even the most simplistic of translational invariance without many
hidden layers. Hence, to use MLPs for these applications, DL practitioners would need to walk a
fine line between a model with too little parameters (spatial invariance) and a model with too
many parameters (prone to overfitting, computational inefficiency, etc.).31 In contrast, CNNs
provide a much higher degree of translational invariance and are capable of highly sensitive,
localized, and computationally efficient feature extraction by way of their very design.
Hence, the use of MLPs for image formation has been largely succeeded by CNNs in most
applications. CNNs are neural networks that use convolution in place of general matrix multi-
plication in at least one of their layers. Similar to MLPs, CNNs are comprised on an input layer,
hidden layers, and an output layer. These hidden layers typically consist of convolutional layers
that pass sequentially the convolution of their input to the next layer (with other type of layers
such as pooling layers, FC layers, and normalization layers). The nature of the convolution oper-
ation allows for reducing the number of learnable parameters necessary for image-based feature
extraction and, hence, increasing the depth of the network architecture.

The size of the set of output feature maps following each convolutional layer depends upon
the number of kernels used, the size of the kernel used, and the stride associated with the sliding
convolution. Along with providing the network with translation equivariance, zero padding can
be used to provide further control over the dimensionality of output feature maps and allows for
the size of the feature maps to be preserved after the convolutional operation. This is useful for
element-wise combinations of feature maps in which the sizes of the sets of feature maps must
be identical.

Although downsampling can be performed using convolutions without zero padding, this
may not be ideal for some applications. A common strategy for reducing the size of a set of
feature maps is pooling. In particular, max pooling is the most popular pooling strategy because
it is both computationally inexpensive and mostly translationally invariant. Additional pooling
strategy alternatives exist, such as global average pooling, which has demonstrated increased
performance in applications of implicit object localization.32

Moreover, the previously discussed convolutional and FC layers perform linear operations.
Therefore, because a composite function of linear functions is still a linear function, neural net-
works that are solely composed of these layers would be unable to approximate a nonlinear
function. Thus nonlinear activation functions are used to insert nonlinearity into the convolu-
tional and FC layers such as ReLU, Leakly ReLU, ELU, PreLU, Tanh, Softmax, and Sigmoid
functions. In addition, recent work has demonstrated promising results using more generalized
and intuitive activation functions, such as GenLU.33

One limitation of traditional CNNs is their use of FC-layers in their architecture, making
them not well suited when processing high-resolution images, for instance. Conversely, fully
convolutional networks (FCNs)34 used for image formation, such as convolutional autoencoders,
do not contain “dense” layers (i.e., FC-layers). Instead, an FCN utilizes 2D convolutions that
perform the feature extraction and mapping task of FC-layers in conventional CNNs. Hence,
FCNs can make inferences in high-dimensional spaces but are also uniquely amenable to input
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of variable sizes. FCNs have exhibited state-of-the-art performance for many computer-vision
tasks, especially when dense labeling is required.34–36 FCNs also have the advantage of providing
end-to-end solutions (execute a series of tasks as a whole). Specifically, autoencoder structures
that are mentioned in this text are FCNs that have an output layer of equal size to the input layer
and consist of an encoder and a decoder section. The encoder transforms the input into a specific
set of features, and these features can then be interpreted by the decoder section to recover the
original data.37

However, in CNNs, the output is produced with the underlying assumption that two succes-
sive data inputs are independent of each other. In other words, they do not have “memory,” and
their output is independent of previous element in a sequence. Recurrent neural networks
(RNNs) have been specifically developed to model/process time series data (e.g., video sequen-
ces). Each element (image) in the time series data is mapped to a feature representation, and the
“current” representation is determined by a combination of the previous representations and the
“current” input datum. In other words, RNNs have loops between layers that allow information
to persist. One issue often encountered when using RNN is the vanishing/explosion gradient
problems (difficulty in training network). Long short-term memory networks have been designed
to overcome this issue and are widely used in classification and forecasting based on time series
input across many applications.38

2.2 Considerations in Network Architecture

Deep neural networks (DNNs) are now consistently producing the state-of-the-art results in
countless applications across fields. Beyond the refinements in network architecture and training
methodologies (see the next section), it is unquestionable that the computational prowess of
current GPU units in conjunction with the availability of large datasets are central to these suc-
cesses. Current DL implementations have been characterized by an increase in depth and com-
putational complexity. For instance, the visual geometry group demonstrated that the depth of a
network was a critical component to achieving better classification accuracy in CNNs.39

However, a phenomenon known as “degradation” was observed when network depth was
increased. Degradation refers to the sudden rapid deterioration of network performance during
training. One of the issues associated with increasing network depth is the explosion or vanishing
of gradients during backpropagation. To address this challenge, Ioffe and Szegedy40 introduced
“batch normalization.” Batch normalization layers are used to fix the mean and variance of layer
output during forward passing, squashing any large activations and increasing network stability.
The mechanism of how batch normalization works has been largely accepted as being due to the
reduction of internal covariate shift or abrupt changes in the distribution of the layer input.
Santurkar et al.41 recently illustrated that this was not so and that more exploration is needed
for a definitive answer. Because the effect of batch normalization is deemed dependent on the
batch size and sometimes is misleading to use it for recurrent networks layer normalization has
been proposed for use instead.42 In this case, the normalizing mean and variance are calculated
from all inputs to neurons in a layer per each sample. It has been shown to be easier to implement
in recurrent networks and to further reduce training time. In this regard, weight normalization43

can also be applied successfully to recurrent models and has shown improved speed compared
with batch normalization. The use of normalization techniques coupled with a good weight
initialization strategy44 can be a key to avoiding degradation and accomplishing network
convergence.

As an example to address the degradation effect, a DNN framework deemed “inception”
developed by Szegedy et al.45 utilized feature concatenation of activation layers to develop larger
networks than had been viable without performance degradation. Conceptually, the group’s work
stemmed from the idea that visual information should be processed at different scales and aggre-
gated to enable subsequent layers to utilize information from several scales concurrently. The
group’s model architecture (deemed “GoogleLeNet”) was the first of its kind to increase network
depth and width without increasing computational burden, and it allowed the group to achieve
first place in the ILSVRC 2014 classification challenge by a significant margin. In addition,
DNN “ResNet,” along with the concept of a “residual block,” was proposed by He et al.46

The principal contribution of this work was demonstrating that residual connections
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(element-wise sums of a set of feature maps) can be used to mitigate the effect of vanishing
gradients and improve training stability—even in CNNs of a previously inconceivable number
of hidden layers. The idea is that, if added model depth could compromise performance, residual
blocks will converge to identity mapping of the earlier layer’s output. Ronnenberg et al.47 pro-
posed U-Net, which used ideas from inception and employed concatenations instead of residual
connections to combine features learned from early layers with more abstract features extracted
at deeper layers for semantic segmentation. Given both its demonstrable performance and adapt-
ability, this architecture has been widely adopted, and several of its extensions have exhibited
state-of-the-art performance across a great number of applications. Another important consid-
eration when designing networks is to ensure that the proposed architecture is secure and not
tricked by adversarial attacks that might want to disrupt the network’s estimations. Generative
adversarial networks (GANs) are a unique class of CNN capable of being used in supervised,
unsupervised, or reinforcement learning (RL)-based applications. The defining feature of a GAN
is its “discriminator”—an extension of the traditional CNN [deemed the GAN’s “generator,”
Fig. 1(d)], which conventionally acts as a classifier.48 Indeed, the role of a GAN’s discriminator
is to discern “real” data (i.e., ground truth) from “fake” data (i.e., the generator CNN’s output).
In practice, this is actualized through the incorporation of an additional loss term associated with
the discriminator that aims to update the discriminator’s weights in such a way that the discrimi-
nator becomes progressively more proficient at telling the difference between the CNN’s output
and that used for ground truth. Hence, conventional loss metrics (e.g., MSE, MAE, and SSIM)
are augmented by an additional discriminator loss that guides the model further toward gener-
ating data with statistics equivalent to that of the target output.49 This loss often takes the form of
binary cross entropy—a loss used to map each reconstruction to two values between one and
zero (i.e., one-hot encoding). These values act as the model’s predicted likelihood of each recon-
struction being real or produced by the model. Hence, the aim is to gradually “fool” the dis-
criminator, where it would eventually be unable to discriminate between the model’s output and
ground-truth data.

Overall, the goal of designing a neural network is to maximize performance while minimiz-
ing the resources needed to train this network. Indeed, there is a current recognition that many of
these DL systems train models that are richer than needed and use elaborate regularization tech-
niques to keep the neural network from overfitting on the training data. This comes at a high

(a)

(c)

(b)

(d)

Input

Reshape(1D 2D)
Conv2D
Conv2D Maxpool
Conv2D UpConv
Skip connection
Output
Real image

Dense layer

Prediction

Generator (U-Net) Discriminator (classifier)

Fig. 1 (a) AUTOMAP, an example network architecture capable of mapping 1D sensor-domain
input to 2D image space through a combined use of FC and convolutional layers. (b) Classical
encoder–decoder convolutional network architecture. (c) U-Net: variation of the encoder–decoder
architecture by adding long skip connections to help deeper networks avoid suboptimal conver-
gence (e.g., vanishing gradient) and to recover information lost during encoder downsampling.
(d) GAN framework with U-Net as generator. The “discriminator” is trained to discriminate between
“real” and “fake” (i.e., ground truth and GAN-generated, respectively) image data.
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expense in the form of computing power, time, and the lack of global accessibility. This is where
the concept of network interpretability50 becomes so important. Interpretability refers to how
easy it is for a human to understand why the output and decisions made by an ML model are
the way they are. The higher the interpretability of the model is, the easier it might be for a human
to understand its design and improve on it.

2.3 Training Methodologies

DL methodologies are often classified based on the type of data and associated training
approaches. These include supervised, semisupervised, unsupervised, reinforcement, and adver-
sarial learning. We provide below a brief summary of these different learning approaches.
Supervised learning is the most utilized learning strategy in ML. It relies on having both training
and validation datasets along with their “ground-truth” complement. The ground truth is unique
to each application (e.g., one-hot encoded vectors for image classification) and implies that the
relationship between input and output for is known explicitly before training. Model training
(i.e., gradual updates to a network’s weights) is performed through minimization of a cost func-
tion (often referred to as “loss”) via the process of backpropagation. Backpropagation, the fun-
damental method with which neural networks use to “learn,” makes use of the chain rule to
propagate updates throughout the network topology in a way that further minimizes the chosen
cost function. For instance, in the case of supervised learning, the cost function inversely rep-
resents the accuracy between the model prediction and known ground truth for all training
inputs. For example, under a supervised framework, a network that classifies images is trained
using classifications that are made by practitioners. In this application, humans are perfectly
capable of generating trustworthy labels. For example, practitioners can of course be trusted
to correctly classify a picture of a dog as “dog.” However, supervised learning has its limitations
in applications that are more difficult because human labels are often costly with respect to both
time and resources. Further, depending on the target application, given labels may not be trust-
worthy or cannot be generated. In this case, one can consider unsupervised learning.

Unsupervised learning aims to discover unknown relationships or structure in the input data
without human supervision (or minimal). The appeal of unsupervised learning is that many
applications do not yet benefit from large datasets that have been exhaustively labeled.
Unsupervised DL methods include clustering, sample specificity analysis, or generative model-
ing. Semisupervised learning and weakly supervised learning, which will be described when
discussing the specific works that use them, are considered hybridizations of supervised and
unsupervised learning strategies. A particularly unique unsupervised learning strategy that has
been employed in applications ranging from unmanned robotic navigation to defeating chess
grandmasters is RL.51 Problems that use RL can essentially be cast as Markov decision processes
associated with a combination of state, action, transition probability, reward, and discount factor.
When an agent (i.e., the decision maker) is in a particular state (e.g., location in a maze), it uses a
policy to determine which action to take among a set of possible actions. The agent then under-
goes the policy-informed action and transitions into the next state, where a reward value cor-
responding to desirability of the new state is obtained. This process repeats until an end point is
reached (e.g., reaching the exit of a maze). Afterward, a total cumulative reward value is calcu-
lated and used as feedback for parametric adjustments and subsequent iterations, gradually guid-
ing the agent to “learn”which actions are “good” and “bad” at each state. In this way, the agent is
made to maximize the total reward that it receives while performing a given task. The primary
objective is to learn the optimal policy with respect to the expected future rewards. Instead of
doing this directly, most RL paradigms learn the action-value function using the Bellman equa-
tion. The process through which action-value functions are approximated is referred to as
“Q-learning.”52 These approaches utilize action-value functions that determine the advantageous
nature of a given state and state-action pair, respectively. Further, an advantage function deter-
mines the advantageous nature of a given state-action pair relative to the other pairs. In recent
years, these approaches have demonstrated remarkable feats, famously achieving superhuman
performance when applied to various board/video games such as Go53 and StarCraft.54 At
present, the applications of RL, though undeniably laudable and continuously expansive, have
been somewhat limited in scope given the narrow subset of pressing problems for which the use
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of RL would be uniquely advantageous relative to the approaches previously discussed.55

Another important methodology is adversarial learning,56 which is an ML method that involves
the use of adversarial samples that closely mimic “correct” inputs with a main purpose of tricking
the model and yielding incorrect predictions. Understanding adversarial attacks is highly impor-
tant for the design of secure ML models.

3 Deep Learning for Estimating Optical Properties

Investigating not only tissue structure but also its functional status through light–matter inter-
actions has been the focus of multiple biomedical optics applications over the last few decades.
Of importance to the field, most tissue types and/or diseases to be monitored are relatively
deep seated in vivo, i.e., below the epithelial layers. For such tissues, with depth ranging from
a few hundred microns to a few centimeters deep, DOI techniques are required as the collected
photons have experienced multiple scattering events even at the typically longer wavelength
employed.57–59 DOI encompasses various techniques that aim to quantify the tissue OPs that
govern light propagation at this spatial scale,58,60 namely the absorption coefficient μa,
or its related chromophores when spectral information is available (including oxy-, deoxy-
hemoglobin, water, and lipids59), and the scattering coefficient μs (or typically its isotopic equiv-
alent, the reduced scattering coefficient μ 0

s). Such an estimation task is typically performed by
fitting the experimental data to a dedicated mathematical model. Hence, it was recognized early
on that neural network models could perform such tasks. The first use of neural networks to infer
OPs was demonstrated by Farrell et al.,61 who constructed an ANN that was able to retrieve OPs
from spatially resolved reflectance data. This ANNwas designed to output the reduced scattering
coefficient μ 0

s and the absorption coefficient μa, while being inputted with a transform of the
diffuse reflectance profile R based on radial distance ρ to emphasize its relationship with the
total optical transport coefficient μ 0

t . The ANN was composed of eight input nodes (eight radial
separations in the reflectance data), a hidden layer of eight nodes, and an output layer with two
nodes—one each for the effective and the total transport coefficients. To train the network, reflec-
tance datasets were acquired from various well-characterized materials. Overall, the authors
reported that their network was able to output results within <7% root-mean-square error while
using an unlabeled test set. Additionally, this ANN proved 400 times faster than the conventional
gradient search algorithm by Bevington in their time.61 The high accuracy and fast computational
speed of this early work highlight the potential of neural network for diffuse optical spectros-
copy. This seminal work has recently been followed by more contemporary implementations that
benefit from the exponential computational power increase achieved since. Gökkan and Engin62

developed an ANN that, similar to Farrell et al., was designed to estimate the absorption and
scattering coefficients directly but using 17 spatially resolved data extracted from a dense reflec-
tance measurement acquired via a CMOS camera. The ANN was trained using the Monte Carlo
dataset and tested on liquid phantoms with properties ranging from μa ∈ ½0.01 to 12� cm−1 and
μ 0
s ∈ ½5 to 35� cm−1. These OPs cover the wide range of in vivo conditions. The author reported a

good agreement between the liquid OP’s values and the ANN estimation, though they did not
provide quantitative accuracy values. Ivančič et al.63 developed another ANN to estimate tissue
OPs, but for a more challenging cases of 4 parameters: μa, μ 0

s, subdiffusive reflectance first sim-
ilarity parameter (γ), and next similarity parameter ðδÞ. These additional parameters significantly
affect the reflectance profile when operating in a small spatial range in which the photon col-
lected can be minimally scattered, and hence, the reflectance patterns still greatly depend on the
anisotropic characteristics of the scattering interactions. This is the first neural network imple-
mentation reported to estimate OPs beyond μa and μ 0

s. Of note, a separate ANN was used to
estimate each optical parameter individually. Each ANN was comprised of an input layer, two
hidden layers, and an output layer with a variable number of hidden nodes. The input data con-
sisted of five reflectance source–detector separations (220, 440, 660, 880, and 1200 μm), and the
light propagation was validated with a Monte Carlo simulation. The ranges of OPs considered
were μa ∈ ½0.0005 to 0.25� mm−1 and μ 0

s ∈ ½0.5 to 2.0� mm−1. The authors compared their
results with spatially resolved reflectance data from a hyperspectral source and an optical fiber
probe with the best results achieved when using the hyperspectral source. They observed a root
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mean squared error with 1.0%, 1.3%, 1.1%, and 4% for μa, μ 0
s, γ, and δ, respectively. Moreover,

their ANN approach was four orders of magnitude faster than the lookup table (LUT) method
that they used as a benchmark.

These works highlight the potential of neural networks for OPs estimation, especially for fast
inference. In all cases, reflectance geometry was used as it is the most useful sensing method
in clinical scenarios. Still, recent progress in structured light imaging has led to a popular new
technique to estimate the OPs of tissue over large field of view and in real time, namely, spatial
frequency domain imaging (SFDI).64

3.1 SFDI-Based Optical Properties Classification with Deep Learning

OPs retrieval on a large field of view is mainly motivated by identifying pathologic tissue areas
(burn degree assessment, malignant tumor versus benign, etc.). Hence, the OPs are used for the
classification task. This can be performed using ML methods that have been developed over the
last three decades, including SVM26,65 or random forest (RF),66 which are referred to as shallow
learning techniques. For instance, Laughney et al.67 utilized intraoperative SFDI paired with a
k-nearest neighbor (KNN) algorithm analyses for classifying tissue as benign or malignant
before conventional tissue resection in human patients undergoing lumpectomy. More recently,
Rowland et al.68 performed multifrequency, multiwavelength SFDI along with SVM classifica-
tion to discriminate between types of controlled burns in vivo (porcine subjects). Altogether, the
use of shallow learning models for these example cases illustrated good classification perfor-
mances. However, though shallow supervised learning classification techniques can provide
a higher degree of interpretability than DL, they are not optimal when the data are high
dimensional in nature (such as an image). In such cases, DL models have been reported to con-
sistently outperform these shallow learning methods. Hence, the current thrust in the field is to
craft dedicated DL models and, when possible, benchmark them against well-established ML
methods.

For instance, Sun et al.69 employed SFDI for detection of early fungal infection in peaches
while performing the classification task using partial least-squares discriminative analysis
(PLSDA) and a CNN-based workflow. Maximum detection accuracies using PLSDA analyses
reached 84.3% compared with a CNN, trained with a small fraction of the total data collected,
which reached 98.6% and 97.6% detection accuracy for the two most challenging cases.
However, as Li et al.70 recently demonstrated, utilizing a boosted ensemble of shallow classifiers
can also provide high-level discriminative performance as well as enhanced robustness.
Embracing this approach, Pardo et al.71 recently presented a DL routine that utilizes an ensemble
of DNNs, each of which is crafted to take a different sized image patch as input, as an approach
to perform patch-wise tissue classification for lumpectomies via SFDI.72 Therein, the authors
self-developed method of “self-introspective learning,”73 which was an intrinsic measure of the
trained model’s familiarity with the input upon inference, was incorporated. Pardo et al.74

extended this work via the use of adversarial learning. With the incorporation of an autoencoder
for data dimensionality reduction, the group developed an unsupervised method for real-time
margin assessment of resected samples imaged with SFDI. The authors designed a “four-
domain” approach, allowing for a large degree of network interpretability. Indeed, for successful
clinical translation of classification algorithms, both optimal model performance as well as
capability to provide insight into the models’ decision-making process to the end user will
be necessary. Still, the models described above are dedicated to a specific classification task
that can be application specific but also typically requiring preprocessing of the experimental
datasets to provide the required inputs. Nevertheless, DL methods are also well-suited for tack-
ling the SFDI inverse problem that aims at retrieving the wide-field OPs from experimental
spatial modulation transfer functions.

3.2 SFDI-Based Optical Properties Reconstruction with Deep Learning

Estimating the OPs in SFDI typically involves an inverse problem that includes an optical for-
ward model.64 This can be performed via iterative fitting using analytical or stochastic
approaches (Monte Carlo) or LUTs. Even if effective, these approaches can require some level
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of expertise and can be computationally burdensome such that they do not lend themselves to
real-time applications, a main feature of SFDI appeal. AI-based models are expected to signifi-
cantly speed up the OPs estimation speed of the SFDI while potentially reaping benefits such as
robustness to noise. In this regard, Panigrahi and Gioux75 attempted to tackle this bottleneck via
an RF approach. Though the group reported reduced accuracy using RF compared with even the
low-density LUT, the authors noted that the investigation was limited to the use of just two
spatial frequencies. Thus the authors concluded that other ML techniques, especially DL, may
be better suited for time-sensitive analyses of data containing multiple spatial frequencies. Zhao
et al.76 published the first work applying DL to SFDI for OPs retrieval via deep MLPs. Notably,
the group trained their model using sparsely sampled, MC-simulated data and validated their
approach on human cuff occlusion data in vivo—exhibiting significant increases in computa-
tional speed as well as comparable accuracies with state-of-the-art iterative solvers. Building
on this work, Zhao et al.77 employed a deep residual network (DRN) to go a step further and
map SFDI-retrieved diffuse reflectance input to chromophore concentrations (HbO2 and HHb)
directly rather than to OPs. For this, the authors developed a simulation data routine for model
training via pairing MC and Beer’s Law. Notably, upon in vivo validation, the authors’ DRN
approach exhibited an order of magnitude speed boost versus the groups’ prior MLP. An alter-
native method aimed at decreasing the SFDI speed bottleneck in terms of data acquisition, single
snapshot of optical properties (SSOP), attempts to decrease the number of acquisitions necessary
to perform conventional demodulation to that of a single AC image [Fig. 2(a)].79,80 However, the
method suffers from negative image artifacts that are intrinsic to the technique. These include
blurred edges, frequency-dependent stripes, and decreased resolution, among others. Chen
et al.81 reported the first DL technique aimed at performing SSOP reconstruction that demon-
strated improved image quality. For this, the authors employed an end-to-end learning approach
via a conditional GAN. The groups’ technique mapped multichannel input, comprised of target
sample and calibration phantom images, directly to profilometry corrected OPs via a residual
U-Net generator [Fig. 2(b)]. Alternatively, Aguénounon et al.82 recently developed an approach
that instead used DL-based demodulation paired with GPU-accelerated computing for OP
retrieval. Of significance, the authors focused on practical dissemination of the DL routine;
because it does not require specific calibration for model output, the model complexity was
made friendly to those without high-end GPUs, and profilometry was made to be an output
of the model to provide greater insight into the model prediction. The group reported

Fig. 2 (a) Traditional method for retrieving oxygenation values via SFDI. (b) GANPOP and
(c) OxyGAN (reproduced with permission from Ref. 78).
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high-quality, profile-corrected OP retrieval across a 1024 × 1024 input in just 18.1 ms using a
single NVIDIA GTX 1080Ti.

If retrieval of OPs across a wide FOV in real time is valuable, biological interpretation would
still be greatly enhanced using multiple wavelengths for subsequent retrieval of chromophore
concentrations directly. In this regard, real-time (1.6 ms∕1024 × 1024 image) retrieval of both
OPs and oxygenation maps has recently been accomplished by Aguénounon et al.83 through
spatiotemporal modulation of two wavelengths coupled with a highly optimized computational
framework—including LUTs employed via compute unified device architecture GPU process-
ing. However, the authors’ optimized 2D-filtering technique introduced numerous artifacts to the
retrieved image. Aiming to address this, Chen and Durr78 recently built upon their prior cGAN
framework to map reference-calibrated, two-wavelength SSOP input directly to profile-corrected
StO2 [Fig. 2(c)]. The authors, benchmarking against four-wavelength SFDI ground truth,
reported markedly increased reconstruction accuracies compared with conventional SSOP solv-
ers as well as their prior architecture paired with pixel-wise fitting. Notably, the trained generator
was capable of 25 Hz StO2 retrieval across 1024 × 1024 FOVs using a quad-GPU workstation.
Together, the authors’ results support the use of end-to-end DL solvers versus partial DL
incorporation.

Given the above, successful adaptation of a DL-based workflow for real-time SFDI heralds
its implementation in challenging clinical scenarios such as deployment for image guided sur-
gery. Still, it is expected that further developments in DL models and training/validation strat-
egies will continue to propel SFDI toward the patient bed side. Additionally, coupled with ever
more sophisticated optical instruments, future work will likely focus on including the quanti-
fication of an increased number of relevant biological chromophores for improved specificity
(oxy-hemoglobin, deoxy-hemoglobin, water, lipids, melanin, and yellow pigments). Beyond
providing fast and robust image formation and classification tools, DL models are also expected
to impact the next generation of SFDI instruments. Indeed, the successful implementations of
relatively small DL models such as in prior work,82 enable their implementations on the back end
of the instrumentation for clinically friendly form factors. Still, as in the field of DL for medical
diagnosis at large, the black-box nature of current implementations limits their wide clinical
dissemination. For clinical acceptance, explainable AI (xAI) methods that provide insight
into the model’s decision-making will be critical for instilling confidence and widespread
acceptance.84

4 Deep Learning for Macroscopic Fluorescence Lifetime Imaging

Fluorescence molecular imaging has been central to numerous discoveries and advances in
molecular and cell biology. If fluorescence molecular imaging is still mainly performed using
microscopy imaging techniques, mesoscopic and macroscopic fluorescence imaging have found
great utility in imaging tissue at the organ and whole-body scales.85 Similar to nuclear imaging,
fluorescence molecular imaging enables the probing of tissues beyond microscopy depth lim-
itations with high sensitivity and specificity, with the advantage of a wide range of fluorescence
probes, including fluorescent proteins, being commercially available, and with potential for effi-
cient multiplexing (imaging multiple biomarkers simultaneously). Moreover, fluorescence im-
aging provides the opportunity to sense and quantify a unique contrast function: the fluorophore
lifetime. Due to its high specificity and ability to monitor the molecular microenvironment and
changes in molecular conformation as well as increasing commercial offering in turn-key im-
aging system, fluorescence lifetime imaging (FLI) has (re)gained popularity in the last decade.
Still, FLI necessitates computationally expensive inverse solvers to obtain parameters of interest,
which has limited its broad dissemination, especially in clinical settings. Hence, great interest in
the last few years has been put into leveraging ML and DL models to facilitate image formation
or classification tasks using this unique contrast mechanism. However, almost all of these works
have been focused on applications in microscopy or raster-scanning based on time-resolved
spectroscopy. Given that these works still provide relevant innovation and potential utility in
future macroscopic FLI experiments, we include them in our summary below along with the
existing work in ML applied to MFLI.
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4.1 Deep Learning for Fluorescence Lifetime Image Classification

Given the high-sensitivity inherent to FLI, numerous studies exploring the technique’s capability
with regards to classification in vitro have been undertaken within the last decade. Most recently,
FLIM classifiers have been applied in vitro for label-free assessment of microglia86 and T-cell
activation,87 as well as for exogenous labeling of intracellular components88 and monitoring of
intracellular pharmacokinetics.89 In addition, ML classifiers have been used for FLIM-based
tissue discrimination and characterization in applications including diagnosis of cervical pre-
cancer,90 breast cancer resection 91 [Figs. 3(a)–3(e)], and oropharyngeal margin assessment.93

However, this has been almost entirely relegated to microscopic or raster-scanning-based appli-
cations—technologies that are intrinsically limited in their (pre)clinical utility. In contrast, the
potential applicability of wide field FLI extends to applications such as supremely sensitive
fluorescence guided surgery and whole animal preclinical imaging, among others. It is precisely
for applications of this type in which real-time analysis is paramount and the use of DL is posi-
tioned for great impact. Additional discussion on this topic can be found elsewhere.94,95

As in the previous section focusing on OPs retrieval, one significant development in lever-
aging DL models is not for classification tasks but to enable fast and fit-free estimation of life-
time parameters. Such prediction tasks are inherently far more challenging than classification
tasks but are poised to greatly impact the FLI field by providing fast and robust tools that can
be used by the end user communities while enabling reproducibility.

4.2 Deep Learning for Fluorescence Lifetime Image Reconstruction

Lifetime parameter estimation is typically performed by fitting a time series dataset (fast tem-
poral decays) to (multi)exponential models. Wu et al.86 presented the first DL methodology for

Fig. 3 (a) Breast tissue samples labeled by histology and (b) corresponding white light image.
The blue, red, and green markings are tracings added by the pathologist. (c) White light image
augmented with fluorescence lifetime and (d) tissue classification results. (e) Example SVM
hyperplane separations retrieved using FLI values retrieved across different spectral channels
(reproduced with permission from Ref. 91). (f) DNN architecture of FLI-Net. (g) Example
Förster Resonance Energy Transfer (FRET) fraction (FD%) results obtained via FLI-Net across
two organs (liver and bladder) over the span of 2 h postinjection of transferrin. The FD% average
and standard deviation across both ROIs over all acquisitions retrieved via FLI-Net (middle)
and least-squares fitting (rightmost) (reproduced with permission from Ref. 92).
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fluorescence lifetime image reconstruction, wherein the authors employed an MLP-based
approach. The network deemed “ANN-FLIM” was trained with entirely simulated FLIM decays
for biexponential FLIM reconstruction and benchmarked against an implementation of least
squares fitting (LSF). The group reported an increased reconstructive performance via ANN
compared with LSF. However, the authors reported a high rate of suboptimal convergence using
LSF (4.07% of pixels), resulting in many dark spots that are completely unseen in the recon-
struction obtained via MLP. This is a known problem of all iterative-fitting procedures, which
rely heavily on the chosen input parameters and often converge at the upper or lower bounds.
Further, the authors reported a 566-fold speed-increase over LSF (1.8s versus 1019.5s over a
400 × 400 × 57 FLIM voxel). Following on this work, Zickus et al.96 used an MLP trained with
simulated data [Figs. 3(a) and 3(b)], in combination with image stitching, to retrieve a 3.6-mega-
pixel (1875 × 1942 px) wide field FLIM image reconstruction using a time-resolved single-photon
avalanche diode (SPAD) array. Similar to ANN-FLIM, Zickus et al. reported significant recon-
struction speed improvements using an MLP (3.6 s) compared with conventional least-squares
fitting (56 min). However, MLP is known to become unwieldy for high-dimensional data such
as images, and they have been replaced by CNN in many computer vision applications.

Recently, Smith et al.92 presented a workflow for biexponential FLI (microscopy and macro-
scopy) reconstruction-based around a 3D-CNN trained with simulation data. Contrary to MLPs,
where the objective is to map each temporal point spread function (TPSF) to a feature vector
through a learned regression, the author’s 3D-CNN (deemed fluorescence lifetime imaging net-
work, FLI-Net) was crafted to take large spatially resolved fluorescence decay voxels as input
ðx x y x tÞ and output concurrently three lifetime maps parameters, namely, τ1 ðnsÞ, τ2 ðnsÞ, and
their relative abundance AR ð%Þ, at the same spatial resolution as the input. Moreover, the net-
work was made FCN, or capable of taking input of any spatial dimensionality (any image size).
The authors validated FLI-Net’s capability to retrieve highly accurate FLI reconstruction across
multiple FLI technologies (TCSPC and gated-ICCD) and applications (endogenous metabolic97

and Förster Resonance Energy Transfer [FRET]98 imaging). FLI-Net demonstrated high accu-
racy when tested with experimental data not used during the network training. Of importance, the
network was validated for the NIR-range in which lifetimes are far shorter than the visible range
and close to the temporal instrument response function, which is a very challenging case.
Moreover, of significance, FLI-Net significantly outperformed the classical fitting approach
in the case of very low photon counts. This is highly noteworthy for biological applications
as fluorescence signals are dim, leading to relatively high-power illumination or long integration
times for many applications. In turn, this can generate issues such as photobleaching or acquis-
ition times incompatible with clinical applications.

Following on this seminal work, Xiao et al.99 introduced an alternative 1D-CNN architecture
for FLIM reconstruction. In contrast to FLI-Net’s 3D architecture, which takes all FLI data vox-
els as input and outputs 2D images of the lifetime parameters, the 1D model was crafted to
process each TPSF individually. The authors’ 1D-CNN, following a similar training strategy
as laid out in Ref. 92, does not necessitate 3D convolution operations and thus offers the ad-
vantage of decreased computational burden. In particular, this simpler model is amenable to
parallelization and to onboard integration. Such implementation should offer the opportunity
for real time and robust FLI in low-cost settings. However, they are less suitable for use in appli-
cations that involve higher dimensionality. For instance, in the case of DOI applications, the OPs
of the tissue may affect the fluorescence temporal data by attenuating (absorption/scattering)
them and/or delay them (scattering) and hence should be considered. In his regard, Smith
et al.100 expanded upon FLI-Net by augmenting time-resolved MFLI with SFDI-derived bulk
OP information to enable OPs-corrected lifetime parameter estimation, as well as an estimation
of the depth of fluorescence inclusions (referred to as topography of LiDAR). For this task, a
Siamese DNN architecture was designed to take as input MFLI time decays and SFDI-estimated
OP maps (i.e., absorption and scattering) and output both fluorescence inclusion depth and life-
time maps at the same resolution as the inputs. The data simulation workflow used for training
was updated to mimic data acquired experimentally via Monte Carlo modeling of light propa-
gation through turbid media.101 Overall, the proposed computational technique is the first of its
kind to exhibit sensitive lifetime retrieval over wide bounds of scattering, absorption, and depth,
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with real-time applicability over large fields of view. It is expected to have great utility in appli-
cations such as optical-guided surgery.

Another area of growth in FLI imaging is the development of multispectral or hyperspectral
lifetime imaging systems102 that promise to increase specificity by enable enabling to multiplex
and/or unmix biomarkers signatures.103–105 However, accurate biological interpretation of the
acquired rich data is often challenging due spectral crowding (highly overlapping emission spec-
tra) and complex temporal features, especially in the case of ncoeff > 2 (tri-exponentials, FRET,
etc.). Recently, Smith and Ochoa-Mendoza et al. proposed the use of DL along with a novel data
simulation routine to optimize the inverse-solving procedure intrinsic to hyperspectral lifetime
unmixing,106 which for the first time simultaneously used spectral and temporal contrast signa-
tures. Building upon the simulation procedure used in FLI-Net, the group generated TPSFs
across all wavelength channels—dictating intensity by spectral emission profiles chosen at ran-
dom at each pixel. The DNN (named “UNMIX-ME”) mapped 4D TPSF voxels of size x × y ×
t × λ to n coefficient images, each one containing the unmixed abundance of the n fluorophore.
Therefore, if n ¼ 3 then 3 abundance maps will be the network output, each one showing the
abundance of components 1 to 3, respectively, with equivalent spatial dimensionality. UNMIX-
ME outperformed the conventional sequential iterative fitting methodology by demonstrating
higher in silico estimation accuracy of fluorophore abundance in the case of tri- and quadri-
abundance species/states. Notably, the authors applied the model to small animal FRET quan-
tification of transferrin107 and trastuzumab108 kinetics in vivo demonstrating its utility for DOI
applications. Still, UNMIX-ME requires as inputs 4D data voxels (x × y × t × λ) that require
high-end instruments, such as an hyperspectral single-pixel time-resolved camera.109 This sys-
tem is dependent also on a inverse problem to generate the spatially and spectrally resolved
maps, an inverse problem that can greatly benefit DL methodologies.

4.3 Deep Learning for Fluorescence Lifetime Image Formation—Single-Pixel
Imaging

Pixelated cameras based on CCDs and CMOS technology have been widely employed for bio-
medical optics applications to directly acquire the pixelated image of the sample plane.110,111

Despite their multiple advantages, customizing them to detect at wavelengths outside sili-
con-based technology can prove complex. This can be further complicated by the need for hyper-
spectral and/or tomographic images or higher acquisition frame rates.112 In these cases, the usage
of single-pixel imaging has been proposed as the arrangement can be accomplished with a
single-detector offering superior performances.112 A single-pixel imaging setup is commonly
composed of a spatial light modulator, such as a digital micromirror device (DMD), that can
“structure” the sample’s emissions into a predetermined pattern before reaching a single detector
(PMT, 1D-SPAD). Because the patterns are known, the image of the sample plane can be inverse
solved from the collected emissions. The number of patterns traditionally equals the number of
pixels in the image space; however, compressive sensing (CS) strategies have helped reduce the
number of patterns needed for a determined resolution.113,114 In diffuse optics, the usage of pat-
terns rather than raster scanning approaches allows for the use of higher illumination power as
well as fields of view as large as the DMD space. Of note, the quality of the acquired data is
highly dependent on the amount and type of patterns, the OPs of the sample plane, and the
detector’s specifications.115

For MFLI applications, single-pixel imaging has been implemented to obtain hyperspectral
time domain (TD) data, which can be inverse solved into a 2D intensity image. In addition to the
intensity profiles, each inverse solved pixel contains a respective TPSF that can be mono or
multiexponentially fitted through a separate optimization algorithm to obtain a lifetime value
per pixel.9 Therefore, single-pixel-based MFLI typically necessitates two steps: (1) use of an
inverse solver to reconstruct the spatial image with temporal decays at each pixels and (2) sub-
sequent use of a minimization algorithm for retrieval of lifetime per pixel to obtain the lifetime
map(s). Yao et al.17 were the first to propose replacing this two-step process with a CNN capable
of doing both tasks simultaneously. This CNN, named NetFLICS, takes as input the temporal
curved acquired for each individual experimental pattern and outputs two images, one for fluo-
rescence intensity and one for lifetime value. The authors reported that Net-FLICS outperformed
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the classical total variation reconstruction approach used in the field of single-pixel imaging in
all conditions tested, including simulations, in vitro and in vivo [in Figs. 4(a) and 4(b)].
Moreover, NetFLICS was four orders of magnitude faster than the current inverse-based and
fitting methodologies. Finally, and similar to FLI-Net, the FLI quantification provided by
NetFLICS was superior under photon-starved conditions. However, NetFLICS was designed
and trained to output 32 × 32 pixel images based on inputting data from 512 patterns (50%
compression ratio of a 1024 Hadamard base). To increase image resolution and but also decrease
experimental acquisition time, with a focus on in vivo settings, Ochoa et al.113 proposed
NetFLICS-CR, which allows single-pixel TD data to be reconstructed to 128 × 128 pixel res-
olution intensity and lifetime images while only using 1% and 2% of the required data (99% and
98% data compression), which corresponds to 163 and 327 patterns out of 16,384 total
Hadamard patterns. The significant data compression allowed for a reduction in experimental
acquisition time from hours to minutes in in vivo settings. NetFLICS-CR architecture follows the
two-branch design of NetFLICS as well as having the same functional blocks; however, it adds
the usage of 2D separable convolutions and the compressed data training section. Figure 4(c)
shows reconstructions for a Trastuzumab HER2 targeted tumor at two different timepoints as
reconstructed for a 99% compression for a traditional inverse solved method based on TVAL3
solver and NetFLICS-CR, with the latter one being in accordance with the expected biological
outcome. Of note, even though both NetFLICS and NetFLICS-CR were trained solely with sin-
gle-pixel fluorescent MNIST-based98 simulated samples, they were capable of accurately recon-
structing single-pixel experimental data in all conditions, even at extreme compression ratios.

As FLI found utility in an ever-increased numbers of applications and is becoming more
widespread, DL is expected to greatly facilitate its acceptance by providing user-friendly tools
that will permit standardization of the data processing pipeline and reproducibility of biological
findings. It is expected that first the ubiquitous use of dedicated DL models will be adopted in
analysis of FLI microscopy. This is supported by recent developments in open-sourced, user-
friendly FLIM analysis software (e.g., FIJI’s FLIMJ116), which are amenable to implementation
of DL-based features. Beyond speed, accuracy, and ease of use of FLI in low photon counts
settings, DL is also expected to impact the instrumental and imaging protocol design associated
with FLI. For example, Higham et al.117 trained a DCAN for real-time single-pixel imaging by

Fig. 4 (a) NetFLICS reconstructed intensity and lifetime images from time resolved CS single-
pixel raw data for an in vitro dye with decreasing concentration. (b) Quantification of Transferrin
receptor-target engagement in liver and bladder areas.17 (c) Intensity and lifetime images of
HER2 targeted tumor with the drug Trastuzumab as imaged 24 and 102 h postinjection.
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incorporating binary pattern basis projection directly into their model’s encoder to learn optimal
binary pattern sets for a wide range of RGB images. Further, recent work has demonstrated great
strides in reducing MRI acquisition times using optimized sampling of k-space patterns.118–120

Hence, the incorporation and/or adaption of DL approaches to optimize both the acquisition
protocol as well as the reconstruction performance of these technologies is expected.
Further, DL will likely impact the workflow and eventual adoption of many notable MFLI appli-
cations, such as multiplexed preclinical imaging,121 and multimodal MFLI registration,122 among
others.

5 Deep Learning for Diffuse Optics-Based Tomographic Imaging

Still, even if most of the abovementioned techniques/applications pertain to the field of DOI due
to the diffuse nature of the light collected to image the sample, they are typically limited to
shallow subsurface sensing and, hence, require relatively simple forward modeling methods.
When deeper tissues are investigated and 3D capabilities are required, the inverse problem
becomes more complex and challenging to solve. This field, referred to as DOT when focusing
on the 3D mapping of OPs (μa and μ 0

s), fluorescence molecular tomography (FMT) when
attempting to retrieve the biodistribution of a fluorophore, and bioluminescence tomography
when the molecular probe is bioluminescent, is hence dependent on the selection of dedicated
forward models, refined inverse solvers, and regularization techniques. Due to the ill-posed and
ill-conditioned nature of the inverse problem, the selection and optimization of these three
important components of the inverse problem greatly impact the image reconstruction process
in terms of computational burden, stability, and accuracy. This is still after three decades of being
an expert domain. Hence, following the trend of investigating the potential of DL for image
formation, there has been an increased interest in the application of DNNs for diffuse tomo-
graphic imaging with the goal of improving computational speed and user friendliness while
enhancing the reconstruction quality.123,124 We provide the summary of current efforts for the
three subfields of DOT in the next sections.

5.1 Deep Learning for Diffuse optical Tomography (Optical Properties
Contrast)

If DOT has been historically the first focus of 3D diffuse imaging, it is still not the main appli-
cation for DL image reconstruction. Indeed, to date only a few works have been reported. Yoo
et al.123 were the first to investigate the potential of a DL end-to-end model to reconstruct het-
erogenous optical maps in small animals. Their proposed DNN, shown in Fig. 5(a), followed a
classical encoder–decoder structure that aims at solving the Lippmann–Schwinger integral equa-
tion with the deep convolutional framelets model127 by doing a nonlinear representation of scat-
tered fields and avoiding linearization, or iterative Green’s functions calculations. The input data,
i.e., light intensity surface measurements, are translated to the voxel domain, and unknown fea-
tures are learned from the training data through a fully connected layer, which is followed by 3D
convolutional layers and a filtering convolution. Their training data were simulated with
NIRFAST128 with up to three spherical inclusions of different sizes (radii ∈ ½2 mm; 13 mm�)
in which each voxel in their space had a defined set of OPs. DNN training used Adam optimizer
with dropout and early stopping to avoid overfitting, and Gaussian noise filtering was applied to
improve generality. The DNN was evaluated using biomimetic phantoms [Fig. 5(c)], in a healthy
nude mouse [Fig. 5(b)] and in a mouse with a tumor. Despite the multiple accomplishments, the
Lippmann–Schwinger approach requires a separate measurement from the homogenous back-
ground, which is unfeasible for clinical scenarios; therefore further research aims at solving this
disadvantage. Despite this, the use of the Schwinger–Lippmann model to structure the neural
network helped to remove the so named “black box” design uncertainty. Furthermore, due to this
design, the nonlinear physics of the photon propagation and inverse solving of absorption con-
trasts can be reconstructed through DL, providing improved reconstruction for both in vitro and
in vivo murine experiments. Nevertheless, the reconstruction speed in the millisecond range
allows for fast in vivo imaging applications.
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Following the autoencoder approach, the work of Ref. 125 aims to inverse solve the spatial
distribution and absorption value of targets in both phantoms and clinically acquired data for
breast cancer applications. Simulated and phantom acquired data were used for network training.
The in silico data were simulated through the finite-element method. Data from measured homo-
geneous targets with no absorption contrast between them were used in the training set, whereas
data from inhomogeneous targets with varying absorption within themselves were used in the
validation set. COMSOL software was used as a forward modeling tool. Measurements were
simulated from inclusions with varying radii, center depths, μa absorption, and reduced scatter-
ing coefficients μ 0

s to mimic layers similar to those of breast cancer tissue. In vitro and clinical
data were acquired with an ultrasound guided DOT frequency-domain platform with 9-point
sources and 14-point detectors.129 The autoencoder architecture uses two sections of neural net-
works. The first section reconstructs OPs from DOT measurements, but for this stage, the
weights information for the trained second section (which involves a forward model that inputs
the μa map ground truth and outputs the predicted perturbation) is used during training to
improve accuracy. The second stage uses a loss function that reflects the MSE between input
DOT measurement (which is the input of the first section) and the prediction. The first section
inputs the DOT measurement and outputs the μa absorption map of the area, while using the
MSE between μa ground truth and μa reconstruction plus weights from the second section.

Fig. 5 (a) Lippmann–Schwinger equation-based DNN.123 (b) In vivo mouse body as imaged with
DNN versus the Rytov method. (c) Reconstructions for breast-mimetic phantoms versus inverse
solved methods. (d) Full training architecture scheme as described in Ref. 125. (e) Results for
example patient 1 (tumor 1.2-cm depth), and patient 2 (0.9-cm depth) in (f), are displayed with
corresponding ultrasound image in first column, validation with the traditional Born-CGD recon-
struction method shown in second column, and in the third column results for the proposed DL-
based approach. (g) Reconstruction process for DGMM architecture. First-stage input and output
matrices. GRU stage and last stage based on MLP. (h) 3D view of simulated mouse and organs
and liver targeted with a source S as seen in the axial cross section. Axial cross-sectional DGMM
reconstructions for sources at different depths from 1.8 to 3.6 mm.126
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Finally, these sections were integrated into a single full architecture as shown in Fig. 5(d), using
the individual section weights as initial estimates for a loss function that included a Born object
function constraint and anatomical information (target radius and voxel distance) as obtained
from the ultrasound image. The results from in silico, in vitro, and clinical information [examples
provided in Figs. 5(e) and 5(f)] indicate that the proposed model accuracy is higher than tradi-
tional reconstruction methods such as Born-conjugate gradient descent, decreasing the mean
percentage error from 16.41% to 13.4% in high-contrast targets and from 23.42% to 9.06%
in low-contrast ones, while also showing improved depth localization. This was also true for
the used clinical datasets, in which absorption contrasts were better estimated.

The work of Deng et al.130 extended on the AUTOMAP architecture131 shown in Fig. 1(a),
where an FC layer inputs the data into an encoder–decoder structure that is followed by a U-Net
arrangement for image denoising and quality improvement. Additionally, the model employs
skip connections to retrieve and enhance high-resolution features for reconstruction. For training,
photon propagation models are simulated through Monte Carlo extreme photon propagation
modeling with single spherical inclusions that have randomly assigned OPs, positions, and sizes.
The simulation included 48 sources and 32-point detectors as in an optical breast imager pre-
viously presented by the group. The first part of network (FC layer and encoder) was trained first,
and the weights were fixed to then reset the learning rate to train the second section (U-Net
layers). Furthermore, the proposed loss function for this work penalizes the inaccuracy from
the inclusions rather than the whole volume, which greatly accelerated the training process.
The approach was tested in comparison with an autoencoder-only network and conventional
finite-element method. The proposed approach resulted in more accurate localization depth and
tumor contrast compared with conventional approach for larger inclusions. This was also true for
inclusions with smaller diameters, multiple inclusions, and irregular shapes, with exception of
≤5 mm inclusions with low contrast. Despite training on single inclusions, the CNN was able to
generalize to multiple inclusion cases in millisecond reconstruction time, though further vali-
dation for experimental datasets must be tested. Additionally, the use of extrinsic probes that
have higher fluorescence quantum yields and hence can greatly improve the signal-to-noise ratio
has also been exploited. In this regard, fluorescent probes that target specific receptors in a tumor
surface are employed to provide better contrast and localization. Despite the ongoing progress on
probe design, reconstructing the spatial distribution and location of the targeted fluorescent areas
suffers from many of the same challenges as we previously mentioned for reconstruction of
optical contrasts. Herein DL approaches have also been applied to the reconstruction of fluo-
rescence tomography.

5.2 Deep Learning for Fluorescence Molecular Tomography
(Fluorescence Contrast)

Guo et al.132 proposed using an end-to-end DNN using a deep-encoder and decoder architecture
(3D-En-Decoder) to perform the FMT reconstruction task. This 3D-En-Decoder learns the rela-
tionship of simulated fluorescent surface photon densities Φ originating from a deep-seated
inclusion to directly output the estimated location and volume of the inclusion, without the need
to model a Jacobian matrix. The network is composed of three main sections: a 3D-Encoder
section that inputs Φ, a middle section containing an FC layer, and a 3D-Decoder yielding the
output x. The 3D-Encoder section is composed of convolutional layers followed by batch nor-
malization, ReLU activation, and max pooling, and it learns features of the acquired surface
photon densities Φ regarding known parameters, including background OPs and the position
and size of the fluorescence target(s). The 3D-Decoder section is composed of convolutional
layers preceded by upsampling and followed by batch normalization and ReLU activation.
This layer outputs the 3D distribution maps of the fluorophore spatial distribution. For training,
FMT simulated sets were generated before the simulation/experimental tasks, with 10,000 sam-
ples for training and 1000 for validation. The simulations replicated a cylindrical sample imaged
every 15 deg from 0 deg to 360 deg. The network was tested for simulated experiments with tube
targets at different distances inside the medium, providing better 3D reconstruction accuracy and
quality than the L1 regularized inverse solving method, which was also validated for an
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experimental phantom as quantified by CNR, Dice, LE1, and LE2 metrics. The 3D-En-Decoder
reconstruction time was 0.23 s—in contrast to 340 s necessary via L1-regularized inverse
solving.

Of note, the simulated training set matched the experimental settings accurately, as required
in supervised learning. Another end-to-end DNN for FMT was proposed by Huang et al.126

DGMM operates with a “gated recurrent unit (GRU)” and MLP-based architecture. As shown
in Fig. 5(g), segment one encodes feature information from the input, which is a 3D matrix
composed of eight RGB images acquired at different views. Then a set of 13 convolutional layers
that contain in between max pooling layers are followed by ReLU activation functions. The
second stage uses GRU to combine the output features from the first stage into a single vector.
The performance of GRUs is dependent on an “update gate,” which helps define the magnitude
of information from prior time steps that should be passed through. In complement, a GRU’s
“reset gate” decides how much information from prior states to forget. The output of the GRU is
a fused 8192 × 1 feature vector as seen in Fig. 5(g). The output of the GRU is received by the last
stage with an MLP to reconstruct the location of the fluorescent target as well as its overall shape.
The MLP contains two hidden layers with dropout to aid overfitting followed by a ReLU acti-
vation. Simulated Monte Carlo samples of a mouse model and five of its organs are used for
training, and a different in silico mouse model with a fluorescent target S in the liver [Fig. 5(h)]
was reconstructed. Barycenter error indicated that single fluorophore S was correctly positioned
with respect to ground truth with comparable results to L1 inverse solved reconstructions. This is
also true for targets S with depths that varied from 1.8 to 3.6 mm [Fig. 5(h)]. This architecture
provides the target’s location and not its 3D characteristics. Moreover, it has been validated
with single inclusions and model-mismatch between the training model and test settings not
investigated.

Another variation of FMT is mesoscopic tomography or MFMT,133 which provides higher
depth and resolution than conventional FMT, reaching ∼100 μm resolution and up to 5-mm
depth. For this application, DL has been proposed not to completely replace the traditionally
inverse solving procedure but to enhance the depth localization and the clarity of the recon-
structed images.124 The input of the network is the estimated fluorescence location and distri-
bution as yielded by a traditional depth-dependent Tikhonov regularization; then a trained 3D
CNN translates the regularization output into a binary segmentation problem that, when solved,
will result in a reduction of the regularization reconstruction error. The network is composed of 5
convolutional layers with zero padding and 2 FC layers with ReLu activation, and the training
datasets consisted of 600 randomly generated ellipsoids and balls to reconstruct simplistic GRUb
geometric figures (e.g., rectangular prisms, spheres, and ellipsoids). This work highlighted the
potential to reduce the volumetric reconstruction and fluorophore localization error while
increasing intersection over union of the reconstructions by 15% with respect to ground truth.
However, Tikhonov regularization is time-consuming; therefore, an optimized first step would
improve the current workflow. Yang et al. built upon this previous research in Ref. 134. Here DL
is used as a complementary method to accelerate reconstruction time and quality, while employ-
ing a conventional inverse solving algorithm, in this case, the least-squares inverse solver with
weighted L1 norm. In this work, the Jacobian sensitivity matrix (forward modeling) is accom-
plished by Monte Carlo-based simulations. A symmetric CNN is then used to find the principal
components of this sensitivity matrix so that the size of the final Jacobian used for inverse solved
reconstruction can be reduced. This allows for artifact suppression as the noise of secondary
components in the Jacobian will be removed; furthermore if the Jacobian size is reduced, the
computational time and burden to inverse solve the 3D target distributions will also be reduced.
The symmetric network follows an encoder–decoder architecture through convolutional and
deconvolutional blocks with ReLU activation functions. Training is performed with MSE
loss and SGD as an optimizer. The results of this work demonstrate that, when using the pro-
posed network, the Jacobian size can be reduced from 21168 × 6615 to a matrix of size of
6400 × 6615, yielding more accurate and faster resolved 3D fluorescence reconstructions.
The approach was tested in silico and for synthetic vasculature samples, yielding better results
than when using an inverse solving process alone without any reduction, both in reconstruction
accuracy and speed.
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Despite DL being successfully used as a complementary tool to the traditional reconstruction
process, many of the highlighted works aim to accomplish an end-to-end reconstruction solution
through DL. For example, the work of Nizam et al.135 also addressed on the use of an
AUTOMAP-based architecture for end-to-end recovery of fluorescence targets for k-space-based
fluorescence DOT. This work assumes a reflectance imaging configuration with wide field struc-
tured illumination and wide field detection. This is important as it can provide faster image
recovery than conventional raster scanning approaches. For this work, the CNN follows a similar
architecture as the AUTOMAP network with three fully convolutional/connected layers, espe-
cially because AUTOMAP was made for k-space modulated information acquired by MRI. For
training data generation, first, the photon propagation model for a homogenous area with fixed
dimensionality was simulated using MCX software,136 accounting for the k-space illumination
patterns. Then EMNIST137 characters are voxelated and multiplied to the simulated homogenous
Jacobian model to generate a measurement vector approximation. The usage of EMNIST-based
simulations should provide better approximation to nongeometric tumors. This is a difference
from the previously mentioned approaches that employ geometric structures such as spheres or
circles for dataset simulation. The network inputs the one-dimensional measurement vector and
aims to output the 3D distribution of the fluorophore. The approach was validated in silico and
compared with traditional inverse solver methods such as LSQR and TVAL3-based reconstruc-
tion. The test samples included variations of letter embeddings from 2 to ∼8 mm depth, with
comparable results to TVAL and LSQR-based inversion on shallow depths. However, once at
higher depths, the CNN performed better than the compared approaches with more accurate
localization and dimensionality reconstructions. This was also true for cases in which there are
multiple letter embeddings. Further extension of the approach involves using a large range of
varying OPs within the embeddings and validation for experimental datasets.

5.3 Deep Learning for Bioluminescence Molecular Tomography
(Bioluminescence Contrast)

Bioluminescence is another class of the diffuse tomographic inverse problem. It pertains to the
“inverse source problem”; inverse problems are notoriously extremely challenging in scattering
media. Gao et al.138 recently reported on MLP model to obtain the bioluminescence density cap-
tured at the surface of the sample. The density of surface photons is the input for the first layer,
which is adapted to the number of nodes at the surface of a standardized 3D mesh of a segmented
mouse head. The mesh results from CT and MRI images and is used to describe the light propa-
gation model at the brain region. Subsequently the network contains four hidden layers, each one
proceeded by a ReLU activation and dropout. The units in these layers equal the number of nodes
in the brain region, which are also used for the output layer, which yields the photon density of the
bioluminescent source. The results displayed better tumor localization in comparison with the
traditional fast iterative shrinkage/threshold (FIST) approach. The results from the used mouse
models and the ex vivo analysis reinforced the accuracy of the proposed network in localizing
tumors. However, further work involves the addition of a section that can reconstruct the tumor
morphology and the tumor position, as well as the inclusion of a larger training set that covers a
wide range of tumor variations. Further investigation of the generality of the network for tumor
types that differentiate from the training sets is also necessary. The use of DL as an inverse solver is
expected to allow for more accurate representations of the photon propagation model and the spe-
cific photon densities after tissue and fluorophore scattering. Depending on the quality of training
data, the assumption of linearity and the use of extra constraints can be alleviated in comparison
with the currently used method. After the inverse solving process, DL could be useful for seg-
menting regions of interest from the retrieved tomographic rendering. Moreover, these character-
istics might be applicable to a variety of optical tomography applications.

6 Conclusions

The versatility of DL in DOI is unparalleled as it has been demonstrated to enable sensitive
discrimination between tissue subtypes, fluorescence image reconstruction, optical parameter
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estimation—the list seemingly increasing ad infinitum. DL’s inherent benefits also permit inves-
tigators to significantly increase the feedback throughput and will aid in the translation of many
techniques to the clinic. The generality illustrated by many of these tools provides promise that
each usage can be context-dependent for each investigation and can yield results that match
current gold standards in various fields, leading scientific investigation in new horizons previ-
ously thought unattainable. Looking forward, DL has great potential to be used for bridging the
gap between experimental data acquisition and data analysis by providing the computational
speed necessary for real-time applications. When optimized, these techniques will have a lasting
impact on many regions beyond the developed world currently without access to high-power
computational resources. Additionally, modifications to these neural networks can be made
to inject principles of mathematics and physics directly through the means of custom loss func-
tions. Custom loss functions permit the networks to use the principles of the subfields that they
are in and to guide their mappings to solution spaces that can be expected from their correspond-
ing problems.

Developments within DL explainability and interpretability, aiming to address the “black
box” nature of high-performing models, will be critical for future widespread acceptance of these
methods.139–142 Although there exists some skepticism about the validity of DL at present, dedi-
cated efforts continue to provide greater degrees of insight into countless DL workflows with
every passing day. With the current deluge of new techniques such as GANs, RL, and countless
others, further development of new architectures as well as methods to ensure generalizability of
such models will only continue to improve. Altogether, these developments will pave the way
toward a future with DL as a reliable tool to accelerate and advance both the expansion of
biomedical knowledge and the degree of care in clinical applications.
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