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Abstract

Significance: Diffuse reflectance spectroscopy (DRS) allows discrimination of tissue type. Its
application is limited by the inability to mark the scanned tissue and the lack of real-time
measurements.

Aim: This study aimed to develop a real-time tracking system to enable localization of a DRS
probe to aid the classification of tumor and non-tumor tissue.

Approach: A green-colored marker attached to the DRS probe was detected using hue-saturation-
value (HSV) segmentation. A live, augmented view of tracked optical biopsy sites was recorded in
real time. Supervised classifiers were evaluated in terms of sensitivity, specificity, and overall accu-
racy. A developed software was used for data collection, processing, and statistical analysis.

Results: The measured root mean square error (RMSE) of DRS probe tip tracking was 1.18�
0.58 mm and 1.05� 0.28 mm for the x and y dimensions, respectively. The diagnostic accuracy
of the system to classify tumor and non-tumor tissue in real time was 94% for stomach and 96%
for the esophagus.

Conclusions:We have successfully developed a real-time tracking and classification system for
a DRS probe. When used on stomach and esophageal tissue for tumor detection, the accuracy
derived demonstrates the strength and clinical value of the technique to aid margin assessment in
cancer resection surgery.
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1 Introduction

Cancers of the gastrointestinal (GI) tract remain a major contributor to the global cancer risk,
with ∼4.8 million new cases of GI cancer worldwide in 2018.1 These malignancies continue to
pose a major threat to public health. The aim of surgery is for complete resection of tumor with
clear margins, while preserving as much surrounding healthy tissue as possible.2 A positive
circumferential resection margin (CRM) is associated with local recurrence of the tumor and
poorer long-term survival.3,4 The five-year survival of patients with esophageal cancer with pos-
itive margins has been reported as 13.8% compared to 46.3% for those with negative margins.5 In
patients with stomach cancer, local recurrence has been shown to be 16% after a positive margin
following surgery.6 For this reason, it is paramount to establish tissue margins accurately.7
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Currently, the gold-standard intra-operative technique for CRM assessment is frozen
sections.8,9 However, this technique is at risk of sampling errors, plus it is time-consuming,
labor intensive, and lengthens the operative time, affecting both patient outcome and theater
efficiency.10

Diffuse reflectance spectroscopy (DRS) is a technique that allows discrimination of normal
and abnormal tissue based on spectral data and presents a promising advancement in cancer
diagnosis.11–14 When compared to sophisticated micro-endoscopic probes, DRS has lower costs
and is simpler because it does not require lasers or magnification optics. The main limitation of
the clinical use of DRS is that, although DRS can discriminate tissue types, it does so by provid-
ing single-point spectral measurements and leaves no marks on the tissue during scanning.15

In this way, it is not possible to localize the area that has been in contact with the probe when
optical biopsy takes place, and thus makes it difficult for the surgeon to determine the resection
margin. This is particularly challenging when DRS is used endoscopically or during minimally
invasive surgery, where the ergonomics of scanning and viewing the DRS probe site are even
more demanding.

To overcome this limitation, the tip of the DRS probe should ideally be tracked to enable
localization of the biopsy site.16 Several surgical tool tracking approaches are available, of which
optical tracking has been the most widely evaluated during surgical practice.17,18 This involves
using color images from one or more cameras to determine a tool’s pose and has been particu-
larly used during minimally invasive surgery.19 Many optical tracking systems involve markers
such as fiducials or color labels such that the tip of the instrument can be recognized and tracked.
For instance, a dual-pattern hybrid marker, incorporating both circular dots and chessboard ver-
tices, provided high detection rates and accurate pose estimation of a laparoscopic gamma probe
achieving a mean translation error of 1.81 mm.20 In another study, biocompatible color markers
appropriate for real-time use during surgery achieved 75% sensitivity and 90% specificity for
a multiple instrument tracking system.21

Other studies have developed systems to delineate resection margins; however, they have
been met by significant limitations. Raman spectroscopy has shown much promise in this field,
but it has not yet been possible to perform probe tracking in real time, although a rate of 2 to 5
frames per second has been achieved.22 Similarly, although fluorescence-guided surgery has the
potential for real-time margin assessment, quantifiable fluorescence imaging information is dif-
ficult to obtain using open-field devices due to uncontrollable parameters, such as the variable
light intensity, working distance, and influence of ambient light on the instruments in the oper-
ating room.23

This paper presents a tracking system to enable localization of the tip of a handheld DRS
probe. The system allowed tracking of the two-dimensional (2D) position and orientation (x and
y axes, angle) of the spectroscopic probe using a color marker to aid real-time assessment of
tumor margins when used on ex vivo cancer specimens. The aim of this study was to support real-
time differentiation of tumor and non-tumor tissue—and thereby to improve existing methods
for intra-operative margin assessment—by introducing a system to track a DRS probe during
surgery.

2 Methods

2.1 Marker Design, Detection and Segmentation, and Calculation of
Tip Position

We first describe the tracking system for the DRS probe, with details about the probe itself and
the ex vivo experiments presented in later sections. Accurate detection and segmentation are
essential for DRS probe tracking. To calculate the 2D probe tip position, we needed to find
the location of the probe in the image plane. The midline of the DRS probe could be found
from the two edges, with the tip point lying somewhere along this line.

The non-uniqueness of the probe color inspired the use of an artificial color marker to iden-
tify it. To choose a distinct marker color, we analyzed the color distribution of real laparoscopic
images that contained all possible colors that may be present during the course of an operation.
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The hue-saturation-value (HSV) color space (Fig. 1) was used since the hue values are directly
related to the color signature. Figure 1(a) shows a typical color distribution for biological tissue
ranging from yellow to purple. For the coded color to be most distinguishable from those present
in the image, two alternative colors were chosen—cyan and green—to construct a marker in the
form of plastic tape, 70 mm in length, wrapped close to the tip of the cylindrical probe (Fig. 1).

The overall methodology for using a monocular red/green/blue (RGB) camera (C920,
Logitech International S.A., Lausanne, Switzerland) in a 2D color-based optical marker tracking
system is summarized in Fig. 2. A 2D image calibration method was employed24 that only
requires the observation of a planar pattern (a checkerboard) from different orientations and
positions. A set of pre-captured images from the camera were analyzed to estimate the 3 × 3

intrinsic matrix K that contained the intrinsic parameters (e.g., focal length, optical center, and
radial distortion coefficients of the lens) and the extrinsic matrix that consisted of the 3 × 3 rota-
tion matrix, R, and the 3 × 1 translation vector.

The input video frames were resized from 1920 × 1080 to 640 × 480 for faster processing
and an increase in frames-per-second. Then, the frame was blurred to reduce high spatial fre-
quency information while maintaining visibility of the flat-textured DRS probe. The image was
converted from RGB to HSV color space, and thresholded based on predefined hue (h) and
saturation (s) upper and lower boundaries for either cyan or green color. The segmented frame

Fig. 1 (a) Color distribution of the biological tissue, with cyan color circled as a potential color for
our marker. (b) DRS fiber probe with the green color marker attached.

Fig. 2 DRS fiber probe tracking procedure.
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was converted back to RGB, and morphological erosion and dilation operations were applied to
eliminate negative impulsive noise and positive noise, and to fill possible gaps in the mask.

The various contours in the mask representing segmented objects were identified and
ordered, and the largest one was retained as the likely position of the detected color marker.
Corner points of the bounding box of the contour were extracted and used alongside the
Hough transform to detect the edges of the probe. The midline of the probe was calculated from
the detected edges using standard description of a line located in x–y plane: y ¼ mxþ b.

The tip position of the probe was located by conducting a one-dimensional (1D) edge detec-
tion along the midline of the probe in the segmented image. From Fig. 3(d) it is clear that there
are two possible locations that could correspond to the tip position, one located to the bottom left
of the white segmented probe, and the other one to the top right. To determine which direction to
search for the location of the probe tip along the midline, it was assumed that the probe would
only be moved in the range 0 deg to 180 deg in the yaw axis during ex vivo benchtop sampling.

2.2 DRS Probe Tip Tracking

To deal with real-world situations such as partial occlusion, changing illumination, probe veloc-
ity changes etc., we introduced a standard Kalman filter (KF) to estimate the location of the tip of
the probe based on its location in previous frames.25 The task of the KF was divided into two
steps: prediction and correction. The KF tracked the state matrix that contained the current value
of the probe tip location, while the process covariance matrix contained the predictive error of
those measurements. For each new time frame, the state transition matrix moved the state and
process matrices based on the position at that time, estimating a new position and new covari-
ance. The Kalman gain was calculated along with the detected probe tip positions. The correc-
tion step consisted of the update from the current state using the Kalman in conjunction with the
measurement at that time frame.

2.3 Graphical User Interface

A user interface (UI) was developed using Python 3.6 (Python Software Foundation,
Wilmington) and Qt5 toolkit to integrate all the functionalities (Fig. 4) on a standard PC
(Intel i3 processor at 3.30 GHz with 8 GB RAM). The UI consists of different functions such

Fig. 3 DRS probe detection workflow. (a) Example input video frame. (b) Blurred frame. (c) Hue
channel of the blurred input frame. (d) Binary mask result of HSV segmentation. (e) Detected edge
lines of the probe. (f) Detected tip point of the probe.
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as the “start tracking” function for the initiation of the probe tracking and the “get spectrum” for
the spectral data acquisition. Before starting the acquisition, the user entered patient metadata,
spectrometer integration time, spectral range, tissue type, and DRS calibration etc. in a dialog
box. A single frame was captured of the tissue sample being examined without the DRS probe.
This frame was annotated with all the probed locations at the end of the acquisition process. The
live video feedback from the RGB camera was annotated in real time with the probed positions,
and the current spectrum at each location was displayed in the main GUI window. A colormap
was utilized to visually indicate the probability of a data point belonging to a class of tissue type
(green for normal, pink for tumor, classification described below). Real-time classification was
added to the GUI following the interim analysis of the data. When the experiment was finished,
all data was saved for further correlation with the histological data. The system worked at
30 frames per second with an image resolution of 640 × 480 pixels using a laptop with code
parallelization. Finally, the DRS probe was able to acquire 80 spectra per second through the
developed GUI using multi-threading.

2.4 Ex Vivo Data Acquisition

The study was performed with approval from the Harrow Research Ethics Committee (ref. no.
08/H0719/37) and was undertaken at Imperial College NHS trust. We collected data from
patients undergoing upper GI cancer resection surgery between July 2020 and March 2021 who
gave their written consent to partake in the study.

The DRS system consisted of a reflection probe (Ocean Optics Inc., QR600-7-SR-125F)
containing six peripheral illumination fibers around one light collection fiber (600 μm diameter)
within a 0.125-in. ferrule. A tungsten halogen light source (360 to 2400 nm, typical output power
8.8 W, Ocean Optics Inc., HL-2000-HP) was connected to the six illumination fibers, while the
central fiber was connected to a spectrometer (Ocean Optics Inc., USB4000) [Fig. 5(a)]. The
spectrometer was controlled by the developed GUI. The spectral data acquired by the spectrom-
eter was in the spectral range of 400 to 1000 nm. To protect the DRS probe tip from tissue
contamination a sterile plastic camera drape (365 Healthcare Ltd.) was chosen due to the low
optical interference, low cost, and sterility.

Data were collected from esophageal and/or stomach specimens ex vivo immediately after
surgical resection. The hand-held DRS probe and tracking system was used on suspected normal

Fig. 4 Python software for hardware system control, data acquisition and real-time classification.
(a) Control panel, allowing for execution of data acquisition protocol, probe tracking, hardware
calibration and light source control. (b) Augmented live video feed from the RGB camera.
Real-time classification is displayed on the screen via text and a colored overlay on the tissue,
with a graduated color scale indicating the probability of belonging to a particular class (Normal =
100% green – 100% pink = Tumor). (c) Reflectance data in the 420- to 1000-nm spectral range
displayed in real-time.
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tissue within the sample and on macroscopically suspected cancerous or fibrosed tissue to obtain
spectral information.

DRS measurements of suspected macroscopic tumor site and normal tissue were taken on the
outer (serosal) layer. “Normal” tissue measurements were taken as far from the suspected cancer-
ous location as possible and close to the resection margin, based on visual and haptic inspection
of the macroscopic tissue by a surgeon. Twenty spectra were acquired per tissue point, which
were averaged and displayed in real time (Fig. 4). A minimum of 200 different locations per
tissue type (normal or tumor) were sampled, depending on the size of the region. When possible,
DRS recordings of stomach and esophagus were taken from the same specimen. The data acquis-
ition protocol lasted ∼10 min.

To account for inter-patient, background light, and signal quality variability, spectral normali-
zation, and noise reduction was performed at the beginning of each sampling session using white
reflectance standard and dark-field readings:

EQ-TARGET;temp:intralink-;sec2.4;116;382λDRS ¼ λRAW − λDN
λWST − λDN

;

where λRAW is the raw signal acquired from the spectrometer, λDN is the dark-field signal, λWST is
the white reflectance standard signal and λDRS is the final reflectance value. DRS data were then
processed using a Savitzky–Golay (or digital smoothing polynomial) filter to perform noise
reduction and preserve higher order moments (spectral characteristics) of the original spectrum.
The workflow of the ex vivo data acquisition and analysis is shown in Fig. 5(b).

2.5 Histopathology Correlation

Following the acquisition of all spectra, the suspected tumor location was painted with yellow
tissue dye (Cancer Diagnostics Inc., Durham) and another still image was recorded to allow
correlation with standard histopathological analysis, which was used as a reference test. The
specimen was passed to the histopathology department, where it was sliced and photos were
taken of these slices which included the yellow painted region. The tissue was then processed
according to standard protocols (Fig. 6), with the resulting histology slides marked as either
normal or a range of different tumor types including esophageal adenocarcinoma, esophageal
squamous cell carcinoma, or gastric adenocarcinoma.

Once the painted area was confirmed as tumor, the annotated video frames containing the
optical biopsy-tracked positions of suspected “tumor” tissue were manually labeled as tumor
(Fig. 6). These labels were considered ground truth labels for training of machine learning
classifiers. Measurements at locations, which could not be confirmed by histopathology
(e.g., if the yellow paint was not clear on the sliced specimen or if the paint could not be detected
on the H&E slide) were excluded.

Fig. 5 (a) DRS instrumentation and (b) workflow for ex vivo data acquisition.
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2.6 Spectral Classification

Data from all patients were separately combined into esophagus and stomach datasets. The fea-
tures of the collected data were first standardized by removing the mean and scaling to unit
variance. An automated method was implemented for outlier (e.g., erroneous measurements
or air interference) detection and removal. For this method, the median of the residuals was
calculated, along with the 25th and 75th percentiles. The difference between each historical
value and the residual mean was then calculated. If the historical value was 1.5 times the median
absolute deviation away from the median of the residuals, that value was classified as an outlier.
Additionally, the ground truth provided by histopathology correlation was used for the validation
of the method. To reduce overfitting and improve accuracy, feature selection was performed on
each of the esophagus and stomach datasets. Data were then divided into the training and testing
sets using the repeated stratified k-fold cross-validation (CV) method, with five folds and five
repeats. This CV method was chosen based on a literature review and the nature of the data used
in this study. The stratified five-fold CV method gives a more stable and trustworthy result since
training and testing is performed on several different parts of the dataset and deals with imbal-
anced data. Using this CV method, the dataset is split into five folds such that each fold contains
approximately the same percentage of samples of each target class as the complete set. When
stratified five-fold CV is compared to leave-one-out CV, the latter requires building n models
instead of five, where n stands for the number of samples in the dataset. This means that the
leave-one-out CV method is more computationally expensive than the stratified five-fold CV.
The spectral data analysis process is shown in Fig. 7.

Binary classification into normal and tumor tissue was performed using various supervised
machine learning classifiers, such as linear support vector machine (SVM), multi-layer percep-
tron (MLP), light gradient boosting machine (LGBM), and extreme gradient boosting (XGB).26

Fig. 6 Histopathological analysis of the specimen for purposes of correlation of suspected tumor
location. Histopathological correlation workflow is shown on an example of GAC. The correlation
was performed via yellow tissue paint [marked with yellow arrow across panels (a)–(f)]. The ex vivo
tissue specimen (stomach) (a) with tracked optical biopsy sites of the suspected “tumor” area;
(b) after painting of macroscopic suspected “tumor” tissue with yellow paint; and (c) having been
placed in formalin. (d) Macroscopic slice of stomach tissue. (e) Microscopic H&E slice and con-
firmed GAC (red outlined area). (f) The ex vivo tissue specimen with green colored optical biopsy
sites of confirmed tumor [based on (b)] after manual labelling and removal of tracked optical biopsy
sites that fell outside of tumor area.
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Machine learning classifiers were evaluated in terms of sensitivity, specificity, overall
accuracy, and the area under the ROC curve (AUC). Python 3.6 was used for data processing,
visualization, machine learning classification, and statistical analysis.

3 Experimental Evaluation and Results

3.1 DRS Probe Tracking Evaluation

For the evaluation of the tracking accuracy, two videos from each tissue specimens were
analyzed by manual labeling of the probe 2D tip position (x; y) by two different individuals
(data labelling tool Labelbox Inc., California) and consequently compared to the estimated tip
location by the proposed algorithm (Fig. 8). The root mean squared error (RMSE) between
the estimated and manually labeled tip position was 1.18� 0.58 mm (4.21� 2.07 pixels) and
1.05� 0.28 mm (3.75� 0.97 pixels) for the x and y directions, respectively, as shown in
Table 1. The maximum measured error across all 1050 frames from both videos was 1.76 mm
(6.28 pixels) at a working distance of 30 cm. In Fig. 8, we can see a frame from each video
overlaid with the manually labeled and the estimated probe’s tip position in two different colors.

For further validation, the detection limits and detection rates were calculated by recording
the maximal experimentally distance and rotation angle of the probe (Table 2). The distance was
recorded from the camera to the probe and the limits of rotation were defined about the probe
local coordinate axes (roll, pitch, and yaw). When testing the distance limits, the probe was
translated along the axis of the camera until the detection failed. To identify the rotational motion
limits, the probe was placed at 30 cm from the camera, a typical distance for practical ex vivo
tissue scanning.

The image-based tracking framework was used to map all spatio-temporally tracked biopsy
sites and re-project them back onto the image plane to provide a live augmented view of the
ex vivo spectral acquisition procedure. The biopsy site was defined by the probe tip location,
taken from the tracking procedure, and the geometrical characteristics of the probe.

3.2 Real-time Tracking and Sampling of Ex Vivo Tissue

A total of 32 patients were recruited into this study. Seven patients were excluded due to histo-
pathology assessment, as tumor was reported benign or regressed, resulting in 26 patients being
included in the final analysis. The median age was 68, with the majority of patients being male

Fig. 7 Spectral data analysis workflow.
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(n ¼ 24, 75%). Overall, 20 distinct sets of normal stomach data, 12 of normal esophagus data,
8 of gastric cancer data, and seven of esophageal cancer data were recorded. Ex vivo specimen
labelling errors were identified by reviewing videos of real-time data acquisition retrospectively
and analyzing the DRS probe position over the tissue areas through use of the color tracking

Table 1 Projection error for DRS probe’s tip location.

Dimension RMSE (mm) Maximum error (mm) Minimum error (mm)

x 1.18� 0.58 1.76 0.00

y 1.05� 0.28 1.39 0.00

Fig. 8 (a) and (b) Illustration of probe tracking error with overlaid ground truth (blue line) and esti-
mated (yellow line) probe tip position for two video sequences (600 and 450 frames each). (c)–(f) The
ground truth and estimated projected DRS probe tip pixel position for x axis and y axis for each of
the video sequences. Blue and red lines indicate the estimated and ground truth respectively.
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system. Probe contact artifacts (e.g., lack of probe contact with the tissue) were removed using
the automated outlier detection and removal method mentioned in Sec. 2.6.

A total of 4628 mean spectra were collected for normal stomach, 2305 mean spectra for
gastric cancer, 2990 mean spectra for normal esophagus, and 1939 mean spectra for esophageal
cancer. Each processed mean spectrum contained 505 equally spaced intensity measurements in
the 468- to 720-nm spectral range (resolution 0.5 nm) with data from 420 to 468 nm, and 720- to
1000-nm spectral ranges excluded following interim analysis. The means of all spectra for each
of the tissue classes are shown in Fig. 9.

3.3 Classification of Tumor versus Non-Tumor

Results of the classification for stomach and esophagus spectral data is presented in Table 3.
XGB was the best performing machine learning algorithm for both stomach and esophagus,
achieving an overall normal versus cancer diagnostic accuracy of 93.86� 0.66 for stomach and
96.22� 0.50 for esophagus. The sensitivity and specificity of the classifier were 91.31% and
95.13% for stomach and 94.60% and 97.28% for esophagus. For the XGB algorithm, a step size
shrinkage of 0.3 was used in the update phase to prevent overfitting, while the maximum depth of
a tree was chosen at value of 6 as a higher value of this parameter would make the model more
complex and more likely to overfit. The XGB and LGBM algorithms are both ensemble tree
methods that apply the principle of boosting weak learners using the gradient descent architec-
ture. However, XGB improves upon the base gradient boosting machines framework through
parallelization of tree building, tree pruning using depth-first approach, regularization for avoid-
ing overfitting, and in-built CV capability. Compared with the SVM model, the XGB algorithm
generally showed better performance in terms of accuracy, sensitivity, and specificity. In addi-
tion, the XGB model showed much higher computation speed than all the other algorithms used

Fig. 9 Average (lines) and standard deviations (shaded areas) of themean spectra for (a) stomach
and (b) esophagus.

Table 2 Rotation angle and maximum detectable distance from the
camera to track the DRS probe.

Rotation axis Rotation angle and distance

Roll (deg) 360 deg

Pitch (deg) 360 deg

Yaw (deg) 0 deg to 180 deg

Distance to camera (cm) 10 to 100

Gkouzionis et al.: Real-time tracking of a diffuse reflectance spectroscopy probe. . .

Journal of Biomedical Optics 025001-10 February 2022 • Vol. 27(2)



in this study, due to its inherent parallel processing, requiring only 3.5 s over both training and
validation phases.

4 Discussion

We have successfully developed a real-time tracking system for a DRS probe when used on
stomach and esophageal tissue for tumor detection. Our tracking system showed a measured
root mean square error of 1.18 and 1.05 mm for the X and Y directions, respectively, and a
maximum measured error of 1.76 mm when used. The color green achieved an excellent per-
formance when used as a marker for probe tracking. This tracking system allowed us to classify
spectral data for tumor and non-tumor tissue in real-time with an overall diagnostic accuracy of
94% for stomach and 96% for the esophagus, highlighting the clinical value of our technique.

Our handheld DRS probe and tracking system was able to acquire 80 spectra per second
while providing real-time diagnostic information through direct visualization of the areas on
the specimen that were probed (Fig. 10). Probe tracking was performed in real time at 30 frames
per second.

Different types of optical spectroscopy techniques (e.g., Raman spectroscopy, fluorescence,
and DRS) are being investigated for sensing tissue types.27 Diffuse reflectance is well suited to
real-time characterization of tissue properties and acquisition of information in a short space
of time together with ease of use.22,28–30 The real-time tracking method we have developed
in this study, and the technique for accurate classification of tumor tissue, can also be applied
to other optical spectroscopy probes, such as rapid evaporative ionization mass spectrometry
(REIMS) technology,31,32 fluorescence spectroscopy33 and Raman spectroscopy.34,35 In this way,
the ergonomics, ease of use and validation of data collection for these optical techniques can be
improved.

In our study, we were able to probe the ex vivo specimen within 15 min of tissue resection,
with the real-time spectral data acquisition protocol lasting ∼10 min. This meant that the tissue
was probed as close to its in vivo setting as possible and ensured minimal disruption to the
specimen handling and processing.

There are a number of limitations for this study. First, this is an ex vivo study in which spec-
imens were placed on a white background and colors in the surrounding field could be con-
trolled. However, application in vivo may not allow this and can introduce differences in
color and artefacts (e.g., active bleeding and other instruments), leading to difficulties in tracking
of the color marker. Second, the accuracy of the tracking method could be further increased by
the use of modern deep learning models for probe tip detection and tracking.36–39 Third, the
tracking system used in this study provided two-dimensional (2D) visual information only,

Table 3 Performance metrics for the spectral data classification using XGB. Data presented as
mean ± standard deviation. Overall accuracy calculated as proportion of correctly identified spec-
tra over total number of spectra.

Tissue type Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Stomach XGB 93.86� 0.66 91.31� 1.59 95.13� 0.84 98.50� 0.28

Stomach LGBM 93.63� 0.72 91.00� 1.66 94.94� 0.79 98.40� 0.28

Stomach MLP 90.06� 0.96 86.27� 4.40 91.74� 1.41 96.09� 0.50

Stomach SVM 87.67� 0.81 83.47� 1.27 89.53� 1.05 94.23� 0.52

Esophagus XGB 96.22� 0.50 94.60� 0.92 97.28� 0.63 99.24� 0.19

Esophagus LGBM 96.26� 26 94.38� 0.98 97.47� 0.57 99.27� 0.18

Esophagus MLP 91.97� 2.90 85.18� 4.09 95.97� 2.90 96.74� 0.45

Esophagus SVM 88.35� 0.95 82.19� 4.30 92.34� 2.33 94.19� 0.53
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although we are currently collecting three-dimensional (3D) stereoscopic data to aid clinical
application in the future.40,41 We are also concurrently developing further classification statistics
based on benign or regressed tumor to increase the clinical value of the system, since this study
only focused on tumor and non-tumor tissue. Finally, in laparoscopic surgery, probe tracking will
have to occur with a moving laparoscopic camera.42,43 Moreover, occlusions of the probe caused
by other instruments and the tissue will provide additional optical tracking challenges.

5 Conclusion

The proposed real-time DRS tracking method has been validated on ex vivo data with histologi-
cal ground truth, and the accuracy derived demonstrates the strength and clinical value of the
technique. The method allows real-time tracking and accurate classification with short data
acquisition time to aid margin assessment in cancer resection surgery and has potential to
be applied in routine surgical practice. The methods developed can provide an aid for tissue
tracking and validation against other diagnostic methods, improving the process of evaluating
new spectroscopy modalities.
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Fig. 10 Illustration of real-time DRS probe tracking and classification at different frames during
scanning of a gastric ex vivo tissue specimen. (a)–(c) Real-time visual correlation of scanned opti-
cal biopsy sites on tissue (green dots on each frame) using DRS probe. (d)–(f) Real-time tracking
at each optical biopsy site coupled with binary classification of each site as either normal (100%
green) or tumor tissue (100% pink) via a graduated color map. Tissue type highlighted on screen in
real time (bottom left of each frame).
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