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Abstract

Significance: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer
deaths with a best median survival of only 40 to 50 months for localized disease despite
multimodal treatment. The standard tissue differentiation method continues to be pathology with
histological staining analysis. Microscopic discrimination between inflammatory pancreatitis
and malignancies is demanding.

Aim: We aim to accurately distinguish native pancreatic tissue using infrared (IR) spectroscopy
in a fast and label-free manner.

Approach: Twenty cryopreserved human pancreatic tissue samples were collected from surgical
resections. In total, more than 980,000 IR spectra were collected and analyzed using a MATLAB
package. For differentiation of PDAC, pancreatitis, and normal tissue, a three-class training
set for supervised classification was created with 25,000 spectra and the principal component
analysis (PCA) score values for each cohort. Cross-validation was performed using the leave-
one-out method. Validation of the algorithm was accomplished with 13 independent test
samples.

Results: Reclassification of the training set and the independent test samples revealed an overall
accuracy of more than 90% using a discrimination algorithm.

Conclusion: IR spectroscopy in combination with PCA and supervised classification is an
efficient analytical method to reliably distinguish between benign and malignant pancreatic
tissues. It opens up a wide research field for oncological and surgical applications.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the second leading cause of cancer-related deaths
involving the digestive system after colorectal cancer among men and women in western
countries.1 Modern multimodal treatment plans including chemotherapy and surgical resection
still do not improve overall survival beyond 4.5 years.2,3 Curative pancreatic surgery for malig-
nant neoplasms is highly demanding, with optimal results achieved when microscopically
tumor-free resection margins are obtained. Therefore, differentiation of normal pancreatic tissue,
inflammatory pancreatitis and PDAC is crucial. Reliable macroscopic tissue distinction is not
possible for surgeons. This is especially true in the case of infiltrating tumor margins due to
cellular spread into normal pancreatic tissue (Fig. 1).

However, in most cases microscopic resection margin clearance of pancreatic cancer
determines the patient’s survival rate.3–5 Currently, the gold standard for tissue discrimination
of pancreatic lesions is microscopic histopathological analysis of pre-stained samples. Frozen
sections are sent to pathology intraoperatively to be microscopically analyzed for remaining
tumor cells. This method is used to ensure tumor-free resection margins.

Several methods such as imaging mass spectroscopy and tumor-specific agents for fluores-
cence imaging have been investigated to accurately identify PDAC tissue.6,7 Each method
slightly increases the ability to discriminate between neoplasms, inflammatory tissue and adja-
cent normal tissue. However, the lack of molecular information and time-consuming measure-
ments are great limitations of these methods. A straightforward approach for the identification of
pancreatic tumors is biochemical analysis on the molecular level performed by vibrational spec-
troscopy. Recent reports have been largely dominated by studies focusing on this method to
characterize brain tumors and distinguish between glioblastoma and normal brain cells even
under in situ conditions or intraoperatively.8–13 In particular, Fourier transform infrared (FT-
IR) spectroscopic imaging is capable of showing changes in carcinogenesis-related vibrational
modes in several human cancers, especially in larger areas or homogeneously structured
tissue.14–16 However, the evaluation of IR spectroscopic data captured from biological tissue
or cells is often difficult due to the extensive amount of information.8 Therefore, IR spectroscopic
imaging is often used in conjunction with multivariate methods such as principal component
analysis (PCA) to compress data and maximize and highlight small area variations.

Considering the devastating mortality rate of pancreatic cancer, there is a comprehensive
clinical need for fast and reliable differentiation of pancreatic tissue. IR spectroscopic imaging
has already been used for the characterization and differentiation of human PDAC and pancreatic
neuroendocrine tumors.17 In this study a pair-wise PCA was carried out to discriminate PDAC,
pancreatic neuroendocrine tumor, dysplastic pancreatic, and normal tissue by FT-IR imaging
spectroscopy. The authors found that the four histologic entities can be differentiated based

Fig. 1 Intraoperative image of a pancreatic head resection for PDAC. The image displays the situs
after having resected the tumor. The pancreatic tail (PT) leads to the resection margin (M) with the
pancreatic duct (*) in the center. The liver (L) and the small intestine (SI) are located closely.
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on their IR spectra. The present study aimed to distinguish between normal pancreatic tissue,
pancreatitis, and PDAC, using IR spectroscopic imaging in combination with PCA and super-
vised classification. IR spectroscopic imaging was performed to identify even small tumor clus-
ters within the snap frozen tissues and to subsequently compare the spectral profiles in structural
comparison to standard histological images.

2 Material and Methods

2.1 Sample Preparation

Pancreatic tissue samples were collected from medically indicated pancreatic surgical resections
at the Department of Visceral, Thoracic, and Vascular Surgery of the University Hospital Carl
Gustav Carus, Technische Universität Dresden. Written informed consent was obtained from all
patients prior to surgery. The study was approved by the local ethics committee (EK179052018).

Representative parts of the resected specimens were snap frozen with liquid nitrogen. For IR
spectroscopy, 18-μm thick samples were placed on CaF2 slides using a cryotome. Serial section
samples were mounted on standard slides and stained according to regular hematoxylin and
eosin (HE) staining protocols. HE-stained samples served as histological control for tissue clas-
sification and area recognition. In total, 20 tissue samples were analyzed from an existing tumor
bank according to the described protocol: seven normal pancreas tissues, eight PDAC samples,
and five pancreatitis specimens. The samples were obtained from eight patients with PDAC (four
male and four female, median age 72 years) and from five patients with chronic pancreatitis (four
male and one female, median age 49 years).

2.2 IR Spectroscopy

IR spectra were acquired in transmission mode with an FT-IR Tensor 27 spectrometer equipped
with a Hyperion 3000 IR microscope (both from Bruker Optics GmbH, Ettlingen, Germany).
A 15× Cassegrain objective (0.4 NA) imaged an area of 175 × 175 μm2. The radiation was col-
lected by a 64 × 64 mercury cadmium telluride focal plane array detector. Composite images of
several square millimeters depending on the sample size and morphology (max. 12 × 4 individ-
ual images, 2.1 mm × 0.7 mm) were captured in an automated stepwise manner by moving the
sample stage. All individual IR spectroscopic images were recorded with 2 × 2 binning, so the
dimension was reduced to 32 × 32 ¼ 1024 spectra. Each composite image comprises 4 × 12 ×
1024 ¼ 128 × 384 ¼ 49;152 spectra. Before measuring each sample, a background image was
recorded from the pure CaF2 slide. The spectral resolution was set to 6 cm−1 to improve the
signal-to-noise ratio, reduce the size of the spectral data set, and ensure that all prominent bands
appear clearly in the spectrum, including those with medium intensity. For each pixel, 100 inter-
ferograms were collected, co-added, and Fourier transformed by applying Blackman–Harris
apodization and a zero filling factor of 1. The sample-to-background spectrum ratio and trans-
mission spectra were converted to absorbance values. An atmospheric compensation was per-
formed to subtract contributions of residual water vapor bands from the spectra using the routine
in the OPUS software package (Bruker Optics GmbH, Ettlingen, Germany). Finally, spectral
data sets were reduced to the spectral region of 950 to 1800 cm−1 and stored for subsequent
data analysis.

2.3 Data Processing and Evaluation

Data processing and analysis were performed using MATLAB packages (version 7, MathWorks,
Inc., Natick, Massachusetts). First, raw data preprocessing procedures were carried out involving
the removal of outliers, a linear baseline correction, and a normalization of each absorbance
value of a spectrum to the integral absorbance. Outliers are spectra that are obviously not asso-
ciated with tissue or spectra with a maximum absorbance value larger than 2 or smaller than 0.05.
The baseline of each spectrum was corrected using the msbackadj function in the MATLAB
Statistics Toolbox. Afterward, the spectra were area normalized to eliminate differences due
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to sample thickness or variations in tissue density. The eig function in the basic MATLAB pack-
age was used for PCA calculations. A k-means cluster analysis was performed on area normal-
ized spectra in MATLAB using the k-means function with the distance parameter Mahalanobis.
In according to the elbow criteria, the estimated number of clusters was found to be between 7
and 8. Therefore, the number was set to 10.18 K-means cluster analysis was performed to identify
areas of tumor tissue and normal pancreatic tissue within the tissue sample. Spectra that could be
clearly assigned to tumor, pancreatitis, or normal tissue were used to build up the training set for
the PCA-based supervised classification of unknown tissue samples.

2.4 Classification

A three-class classification model for normal tissue, tumor tissue, and pancreatitis was developed
based on the final pathology report in combination with the calculated PCA score values. PCA
was performed to reduce the large amount of data contained in the measured spectra into a few
important PCs for identification PDAC, pancreatitis, and normal tissue. PC scores were used as
input for linear discriminant analysis using a leave-one-out strategy on the training set.
Classification was performed using the classify function in the MATLAB Statistics Toolbox
together with a leave-one-out cross-validation to establish the calibration model. The training
set was built by random selection of 25,000 spectra for each class and score values of the first 30
PCs resulting in a training data set of three classes ×25;000 spectra ×30 score values. The first 30
PCs achieved the maximum overall accuracy and represented 99.6% of the data set’s variance
(Fig. S1 in the Supplemental Material). Using this approach, each spectrum is represented by 30
values rather than 441 data points.

For classification of the independent test samples, PCA was performed for all spectra indi-
vidually. Subsequently, all spectra were classified stepwise based on the score values of the first
30 PCs. The algorithm provided the probability of membership to normal, tumor, or pancreatitis
tissue classes for both the training and test set. The probability values were converted into an
RGB image.

3 Results and Discussion

Tumor tissue samples were captured and analyzed in a visible transmission mode and an IR
spectroscopic image (Fig. 2). HE-stained standard histopathological specimens served as con-
trol. The grid overlay [Fig. 2(b)] corresponds to the mapping matrix of the IR spectroscopic
images. The sample was imaged by 4 × 12 individual spectroscopic images containing a total
of 4 × 12 × 1024 ¼ 49;152 spectra. Binning reduces the spatial resolution and storage volume of
the data by a factor of four, but increases the signal-to-noise ratio and significance of the spectral
profile. Spectra obviously not associated with tissue or areas with dominant artifacts including a
strong background signal were classified as outliers and removed from the data set. The image
calculated from preprocessed spectra is represented in Fig. 2(d).

In the first step, the mean spectrum and standard deviations of the data set shown in Fig. 2
were calculated and applied (Fig. 3). The spectrum is dominated by the amide I band at
1650 cm−1 (C═O stretching) and amide II band at 1550 cm−1 (N-H bending) of the amide
groups comprising the peptide linkages of proteins (Table 1).

Two more significant bands appear around 1453 and 1400 cm−1, which were assigned to
CH3 bending vibrations of methyl groups. The band at 1235 cm−1 corresponds to the amide III
band and the group between 1000 and 1150 cm−1 is mainly composed of absorption bands of
C─O and PO4− groups of nucleic acids, phospholipids, and carbohydrates. The most important
spectral bands assigned to vibrational modes are summarized in Table 1. Of note is the standard
deviation is 0.1 au. This indicates a large variance in biochemical composition, therefore the
average considered in isolation can be misleading. Furthermore, the most common types of
PDAC are histologically heterogeneous with different tumor tissue compartments such as tumor
cell clusters, stromal desmoplastic tissue, and infiltration zones.

To inspect the biochemical variations across the sample, a more sophisticated data analysis
is required to extract signals from different types of tissue and cells. The mathematical
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investigation of spectral signals to distinguish cancer from normal tissue or to detect tumor cells
infiltrating into normal tissue was performed by PCA. It was used because it is a quick way to
assess variations within the spectral data set. It does not assume any explicit statistical model
underlying the variance of the original spectra. The results of the first three PCs are shown
in Fig. 4.

Fig. 2 (a) Histopathologic HE-stained image served as area recognition and standard tissue
classification. (b) Microscopic transmission image of a cryo-preserved specimen of representative
tissue section with an overlaid grid of the area mapped by IR spectroscopic imaging. (c) IR
spectroscopic raw data bright field image (integrated absorbance [int. Abs.] between 950 and
1800 cm−1) with bar representing width of the image. (d) Image of selected preprocessed spectra
from (c). Spectra of white pixels were identified as outliers and removed from the data set.

Fig. 3 Mean spectrum (μ, black curve) and standard deviation area (δ, gray band) of the sample
represented in Fig. 2. Mean spectrum was calculated from the preprocessed data set of the image
shown in Fig. 2(d).
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The loading plots correspond to spectral bands with the highest variations and weight the
signals in the positive and negative directions. The score map reveals the weight of the loading
plot for each pixel of the image. PCA is applied to the baseline corrected and area normalized
spectra. The first PC represents the mean spectrum of the sample (Fig. 3). The corresponding
score map only shows a few weak variations in intensity. The loading plot of the second PC
shows two positive signals located at 1516 and 1618 cm−1. Both signals are associated with
vibrational modes of proteins and can be assigned to collagen. Another positive broad signal
occurs between 1000 and 1080 cm−1 with a maximum located at 1025 cm−1, representing col-
lagen as well. The weak signal between 1680 and 1750 cm−1 is composed of amide I vibrational
modes and modes of C═O groups. Therefore, the second PC is interpreted to indicate collagen,
which is supported by the histological image (Fig. 2). The red and orange pixels in the score map
correspond to blood vessel structures. The loading plot of the third PC displays strong positive
signals at 1080 and 1655 cm−1 assigned to phosphate groups of DNA and alpha-helical sub-
structures of proteins, respectively. The red and orange pixels of the loading plot correspond to
tumor infiltrating tissue as indicated in the histopathological image (Fig. 2). A series of negative
signals represents vibrational modes of CHx groups and other protein structures. In particular, the
pattern of signals at 1200, 1340, and 1516 cm−1 points to collagen. The blue and turquoise pixels
in the corresponding score map show a similar pattern to that of the red and orange pixels in the
score map of the second PC. The second and the third PC are the most important for classi-
fication purposes. Higher PCs predominantly represent signals without any impact on the clas-
sification, noise, or atmospheric signals.

Table 1 Assignment of vibration modes. The symbols refer: ν, stretching mode; δ, bending mode;
s, symmetric, as antisymmetric.

Position (cm−1) Assignment

1025 νðC─OÞ, carbohydrates, glycogen

1080 νsðPO2− Þ phosphate groups of nucleic acids, phosphodiesters

1200, 1208 Collagen, νasðPO4− Þ

1235 Amide III

1240 νasðPO2− Þ phosphate groups of nucleic acids

1340, 1346 δðCH2Þ, collagen

1396 δðCH3Þ, methyl groups (mainly protein side chains)

1400 δðCH3Þ, methyl groups (mainly protein side chains)

1448 δasðCH3Þ, methyl groups

1453 δasðCH3Þ, methyl groups

1516 Amide II, C─H bending vibration modes (from rings)

1522 νðC═NÞ, νðC═CÞ

1546 Amide II

1560 Amide II

1590 Ring C─C stretch

1618 Ring C─C stretch, collagen

1650, 1655 Amide I, α-helix

1675 Amide I, turns

1715 νðC═OÞ
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The score maps show tumor-budding areas of PDAC that correspond very well with the
histologic image (Fig. S2 in the Supplemental Material). Although these results suggest that
PCA alone is a suitable tool to identify and highlight pancreas tumor tissue, it should be noted
that a precise delineation of cancer is not always possible by PCA due to the high intrinsic
variability of pancreatic tissue. Since tumor-specific spectral features may be weak and overlaid
by all other common tissue signals, a supervised classification has to be performed. This requires
a defined training data set before performing the classification of unknown spectra. Each class of
the training set is used as a reference for the classifier. Since the quality of training data deter-
mines the accuracy of classification, it is necessary to select representative spectra for each class
that cover both the general spectral feature of the class and the natural variability of these fea-
tures. In particular, tumor tissue has a heterogeneous appearance with areas of different cell
density and stages of development. Therefore, two more PDAC samples with histologically dis-
tinct visible tumor areas were analyzed by PCA, and score maps and loading plots calculated

Fig. 4 The first three PCs of the spectroscopic image from Fig. 1. (a) Maps of the score values are
displayed in the centered rainbow color code. (b) Corresponding loading plots to PCs.
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(Fig. 5). The corresponding histological images are represented in the supplementary part
(Fig. S2 in the Supplemental Material). The spectral features of both loading plots are very
similar to each other and to those of the third PC in Fig. 4. In accordance with the histological
images, only spectra indicated by red or orange pixels in the third PC were selected for creation
of the training set. A total of 55,000 spectra representing tumor tissue were selected.

Since it is often difficult to distinguish between tumor and pancreatitis tissue, a second class
of the training set was defined by spectra of pancreatitis. A third class of the training set was
defined by physiological pancreatic tissue. The spectra of two representative samples of pan-
creatitis and normal tissue were taken for creation of the training set. Pancreatic tumor tissue is
often surrounded by connective, inflammatory, and stromal tissue and associated with cellular
inhomogeneity. To select only spectra of pancreatic tumor cells, a fuzzy k-means cluster analysis
was performed to discriminate between tumor cells and nontumor cells. The image of the cluster
assignment was compared to the histological stained micrograph of a consecutive section to
identify areas of tumor cells. An example of cluster analysis and the corresponding histological
image are represented in the supplementary part (Figs. S2 and S3 in the Supplemental Material).
Reddish and orange pixels correspond to dense tumor clusters in the histological image. Only
spectra belonging to the red and orange clusters were used as reference tumor spectra for the
training set. Normal tissue and pancreatitis tissue samples were considered uniform and were not

Fig. 5 Third PC of two additional tumor samples with (a) score values and (b) loading plots. Only
spectra with a score value > 0.005 were selected for the training set.
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differentiated. To compare classes and find unique features, the average spectra were calculated
from more than 55,000 spectra for each tissue class. The averaged spectra and standard devia-
tions of normal, tumor, and pancreatitis tissue are shown in Fig. 6.

Although the spectral profiles may appear similar, there are a few differences between the
classes. While the plot of normal tissue [Fig. 6(a)] exhibits an overall low standard deviation, the
spectra of tumor tissue [Fig. 6(b)] and pancreatitis tissue [Fig. 6(c)] show stronger variation, as
indicated by the higher standard deviation. Another conspicuous difference is the absorption
profile between 1050 and 1150 cm−1. Nucleic acids and carbohydrates as well as their deriv-
atives give rise to prominent bands in this spectral region. Figure 7 highlights the spectral
changes and also shows the difference spectra of tumor tissue [Fig. 7(a)] and pancreatitis
[Fig. 7(b)] compared to normal tissue.

The difference spectrum between tumor and normal tissue shows three prominent features.
While the spectral profile between 1050 and 1150 cm−1 is higher for tumor tissue compared with

Fig. 6 Mean spectra (solid curves) and standard deviations (dotted curves) of (a) normal tissue,
(b) tumor tissue, and (c) pancreatitis tissue. Mean spectra and standard deviation were calculated
from training data sets of each tissue class.
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physiological pancreatic tissue, both the amide II (1510 to 1590 cm−1) and amide I bands (1610
to 1690 cm−1) are clearly weaker. The stronger absorption between 1050 and 1150 cm−1 arises
mainly from the greater amount of carbohydrates due to the enhanced and altered metabolism of
the tumor cells. Although the cell density in PDAC is lower compared to normal pancreatic
tissue, tumor cells are characterized by a high proliferation rate. This leads to an increased
amount of DNA as well as enhanced metabolic activity with a higher gene transcription rate
and consequently elevated RNA levels. Hence, PDAC tissue shows a stronger absorption of
nucleic acids, which also contribute to the positive difference signal. In addition, PDAC cells
show altered extracellular matrix protein production, which is associated with myofibroblastic
stellate cells and a remarkable density of collagen fibers.19,20 This desmoplastic reaction is
a surrogate marker of PDAC tissue, which leads to a high fraction of connective tissue.
Consequently, the intensity of the amide I and amide II bands is supposed to be higher than
in normal pancreatic tissue. Due to the selection process for tumor spectra using only dense
PDAC cell cluster areas, connective tumor tissue is underrepresented in the mean tumor
spectrum, thereby resulting in lower amide I and amide II bands.

Pancreatitis tissue shows a lower intensity in the spectral range from 1050 to 1150 cm��1

compared to normal tissue but stronger signals of proteins [Fig. 7(b)]. The amide III band
(1235 cm−1), parts of the amide II band (1522 cm−1), and also components of the amide I
band (1675 cm−1) are higher. The negative signal at 1590 cm−1 as well as the slightly lower
differences at 1208, 1346, and 1650 cm−1 can be assigned to collagen. Pancreatitis is an inflam-
matory biological process within the pancreatic tissue. Different triggers (e.g., chronic alcohol
consumption, biliary system alteration, and hereditary mutations) cause the migration of various
cell types associated with the immune system (macrophages, lymphocytes, etc.) into the tumor
tissue, where they may initiate and maintain the immune response through the secretion of medi-
ators. Macroscopically visible variations of pancreatitis are fibrosis of the tissue and atrophy of
the parenchyma. Hence, the entire biochemical profile is altered compared to normal tissue.

Fig. 7 Difference spectra of the calculated mean spectra: (a) pancreatitis tissue–normal tissue,
(b) tumor tissue–normal tissue.
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In particular, cell atrophy and retained pancreatic secretion in combination with dilated ductal
systems cause a lower density of cells, thereby resulting in weaker absorption signals between
1050 and 1150 cm−1. It should be noted that the explicit molecular mechanisms of pancreatitis
are complex and may cause interactions within the biochemical profile which are not yet well
understood and need to be examined further.

The finding of spectral differences distinguishing the class average spectra leads to the
hypothesis that it might be possible to discriminate between normal, pancreatitis, and pancreatic
tumor tissue. The success of a spectral classification method is dependent on the ability to factor
out possible variability among the spectra within each class. In particular, supervised classifi-
cation methods enable the identification of spectral patterns that are valid within a class even
with intraclass variability.

In the first step, 25,000 spectra of each tissue class were randomly selected for the training
set. PCAwas applied to the entire data set to reduce its dimension while still retaining variability.
The number of PCs included in the classification model was determined based on the classi-
fication accuracy criterion. The plot of classification accuracy in relation to PC is presented
in the supplementary material for all three classes (Fig. S1 in the Supplemental Material).
The optimal number of PCs was defined if a global accuracy of 95% was attained. This optimal
number value of reduced dimensions of PCA is reached when the score values of the first 30 PCs
are used for the classification. The results of the reclassified training set are presented in Fig. 8.

Both normal (N1, N2) and pancreatitis (P1, P2) tissue samples exhibit an overall high clas-
sification accuracy. Tumor tissue sections are known to be heterogeneous and usually display
infiltrating tumor cell areas but also desmoplastic stroma reaction and normal pancreatic tissue.
Therefore, the classification of these samples shows quite heterogeneous RGB assignments com-
pared to normal and pancreatitis tissues. Consequently, we have defined the term “accuracy” in
the clinical context primarily to identify and to discriminate areas and clusters of tumor tissue.
The tumor samples (T1 to T3) show red pixels, thus indicating tumor tissue. However, they also
show green and in the case of T1 even blue pixels, corresponding to normal and pancreatitis

Fig. 8 False color images of the reclassification of samples from which selected spectra were
used for the training set. Reclassification of (a) normal tissue samples, (b) tumor tissue samples,
and (c) pancreatitis tissue samples. N , normal tissue; P, pancreatitis; T, tumor tissue.

Teske et al.: Label-free differentiation of human pancreatic cancer, pancreatitis. . .

Journal of Biomedical Optics 075001-11 July 2022 • Vol. 27(7)

https://doi.org/10.1117/1.JBO.27.7.075001.s01


tissues, respectively. A closer inspection of the tissue sections reveals that most of the areas
classified as normal tissue within the tumor samples do not correspond to tumor cell clusters
but rather to stromal tissue. Structures associated with blood vessels in sample T1 were predomi-
nantly classified as “pancreatitis.” Since the spectral selection process for the tumor category
mainly used dense tumor cell cluster areas, the tumor connective tissue is underrepresented
in the classifier, thus leading to misclassification in these histological areas. Physiological
pancreatic features may outweigh malignant characteristics in regions of stromal tissue. The
comparison of the classified samples with their histopathological HE-stained images does not
show any tumor cell clusters in the normal (green) pixel areas, thus supporting this hypothesis
(Fig. S2 in the Supplemental Material).

The results obtained show that the classification model is successful in recognizing normal
and pancreatitis tissues with an overall accuracy of close to 100% for the reclassified training set.
Based on this training set and classification model, a number of “unknown” tissue samples from
all three classes were analyzed (Fig. 9). Similar to the reclassification of the training set, nearly
all of the spectra of normal and pancreatitis tissue samples were classified correctly. While most
tumor samples were identified properly, they showed a more inhomogeneous false color image
including different pixel types. Comparing the histological images shows that predominantly
stromal tissue was misclassified, thus supporting the selection process hypothesis. Moreover,
in the last several years pancreatic cancer research has focused on the heterogeneity of PDAC
tissue. Different molecular alteration patterns have been recognized and classified into three
common subtypes (exocrine-like, quasi-mesenchymal, and classical) with clinical implications
and varying degrees of chemosensitivity.21 To date, subtype-specific spectral characterization has
not been developed. With regard to the molecular pattern, there might be subtypes with normal-
like spectra, which may lead to partial misrecognition due to the little number of training set
samples. However, the general assignment to the class “tumor” can be defined for all five test set
samples. For a further automatic classification system, a categorizing misclassification threshold
would have to be evaluated based on clinical needs and safety issues. Nevertheless, IR spec-
troscopy is a suitable analytical method to differentiate pancreatic tissue classes in a fast and
marker-free manner.

Fig. 9 False color images of the test samples classification results. (a) Normal tissue samples,
(b) tumor tissue samples, and (c) pancreatitis tissue samples. N , normal tissue; P, pancreatitis;
T, tumor tissue.
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4 Conclusion

IR spectroscopy imaging combined with PCA and supervised classification methods have dem-
onstrated the ability to clearly distinguish between benign and malignant pancreatic tissue in a
fast and label-free way. However, further investigation of the biochemical profile of pancreatic
cancer is needed to improve our understanding of tissue characteristics. Therefore, IR spectros-
copy opens up a wide range of possibilities for characterizing solid human cancer entities in
a markerless manner and may also lead to changes in intraoperative strategy that help achieve
the best outcome for patients.
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