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Abstract

Significance: Near-infrared fluorescence image-guided surgery is often thought of as a spectral
imaging problem where the channel count is the critical parameter, but it should also be thought
of as a multiscale imaging problem where the field of view and spatial resolution are similarly
important.

Aim: Conventional imaging systems based on division-of-focal-plane architectures suffer from
a strict relationship between the channel count on one hand and the field of view and spatial
resolution on the other, but bioinspired imaging systems that combine stacked photodiode image
sensors and long-pass/short-pass filter arrays offer a weaker tradeoff.

Approach: In this paper, we explore how the relevant changes to the image sensor and asso-
ciated image processing routines affect image fidelity during image-guided surgeries for tumor
removal in an animal model of breast cancer and nodal mapping in women with breast cancer.

Results: We demonstrate that a transition from a conventional imaging system to a bioinspired
one, along with optimization of the image processing routines, yields improvements in multiple
measures of spectral and textural rendition relevant to surgical decision-making.

Conclusions: These results call for a critical examination of the devices and algorithms
that underpin image-guided surgery to ensure that surgeons receive high-quality guidance and
patients receive high-quality outcomes as these technologies enter clinical practice.
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1 Introduction

Near-infrared fluorescence image-guided surgery is often posed as a spectral imaging problem
since surgeons must view color images of the surgical site and fluorescence images of critical
anatomy. From this spectrum-centric perspective, in which cameras must capture three channels
in the visible spectrum and one or more channels in the near-infrared spectrum, a large channel
count is valuable because it permits the surgeon to distinguish more fluorophores and discrimi-
nate more tissue types.1–9 But near-infrared fluorescence image-guided surgery is rarely posed as
a multiscale imaging problem even though surgeons must switch between zoomed-out images of
the surgical site and zoomed-in images of the critical anatomy. From this scale-centric perspec-
tive, in which cameras must capture everything from the macroscopic to the microscopic, a cam-
era with a large field of view and small spatial resolution is valuable because it permits the
surgeon to see a larger region of the surgical site in more detail, facilitating a seamless transition
from structures larger than organs to structures smaller than tissues.5,7

Imaging systems marketed for image-guided surgery typically collect visible and near-
infrared images using a division-of-time architecture (as with the Hamamatsu PDE-NEO10,11

and Stryker SPY-PHI12) or a division-of-optical-path architecture (as with the Medtronic
Elevision IR13,14 and Quest Spectrum15,16). These systems can be constructed with off-the-shelf
components, conferring the notable benefit of decades of optical development, but they suffer
from fundamental tradeoffs in time, space, and channel count. On the one hand, division-of-time
instruments project different wavelengths onto a single sensor at different times by, e.g., switch-
ing the excitation source or emission filter, so they require additional time for each spectral
channel and cannot maintain temporal coregistration between spectral channels. On the other
hand, division-of-optical-path instruments split different wavelengths across multiple sensors
along different optical paths with, e.g., prisms or beamsplitters, so they require additional space
for each spectral channel and cannot maintain spatial coregistration between spectral channels.
To permit the high frame rate and small footprint needed in both open surgery and minimally
invasive surgery, imaging systems based on a division-of-focal-plane architecture have been pro-
posed, utilizing a single sensor equipped with a filter array to sample different spectral channels
at different locations, but these systems introduce the very tradeoff between the field of view,
spatial resolution, and channel count that threatens the success of image-guided surgery.
Consequently, these single-sensor devices typically provide three channels in the visible and
one channel in the near-infrared to maximize the field of view and spatial resolution while pro-
viding the bare minimum channel count.17–27

What emerges within this design space is a complex relationship between the parameters that
would optimize an image-guided surgery and the parameters that are practical in an imaging
system. Maximum benefit to both the surgeon and patient may not be achieved via the default
implementations of division-of-time, division-of-optical-path, and division-of-focal-plane
instruments but may instead necessitate careful modifications to these architectures. An example
comes from a hexachromatic bioinspired imaging system for image-guided cancer surgery that
was recently presented by Blair et al.28 This imaging system captures three channels in the visible
spectrum and three channels in the near-infrared spectrum, facilitating the detection of multiple
fluorophores in the operating room, but it captures those six channels, not with the six pixels
required by a conventional image sensor but with only two pixels provided by a stacked photo-
diode image sensor. This device thus captures more spectral channels in fewer pixels—
maintaining the balance between the channel count demanded from the spectrum-centric per-
spective and the field of view and spatial resolution demanded from the scale-centric perspective.

In this paper, we explore how the tradeoff between spectral performance and multiscale per-
formance is affected by the design choices for division-of-focal-plane imaging systems by com-
paring the six-channel imaging system described in Ref. 28 with the four-channel imaging
systems that have long been favored by researchers and manufacturers alike.17–27 We do so
by fixing the largest scale available to the camera (i.e., fixing the field of view) and evaluating
performance at the smallest scale available to the camera (i.e., evaluating performance at the
spatial resolution). A discussion of the two imaging systems is provided in Sec. 2, a discussion
of the associated image processing routines is provided in Sec. 3, and a framework for comparing
the two systems is presented in Sec. 4. Methods and results are then provided in Secs. 5–6.

Blair et al.: Decoupling channel count from field of view and spatial resolution in single-sensor imaging. . .
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2 Imaging System

A surgeon performing a complex operation should have instantaneous feedback, so the video
feed guiding their incisions should offer both a low latency and a high frame rate. The imaging
system must thus capture, in a single shot, all relevant information across all relevant scales since
there is no time to collect and fuse different images at different scales (as proposed in Ref. 29). If
the surgeon zooms out, they will visualize the entire surgical site but will not perceive the most
detail in it, yet if the surgeon zooms in, they will perceive the most detail in the surgical site but
will not visualize the entirety of it.30 The images collected at these extreme levels of magnifi-
cation, and any images taken at the intermediate levels in between, illustrate a tradeoff between
the field of view (How much of the surgical site can the surgeon visualize?) and the spatial
resolution (How much detail in the surgical site can the surgeon perceive?). This tradeoff may
be acceptable in some cases; the surgeon may, for example, want to determine the location of one
or more small lesions at the macroscopic scale and then determine the extent of those lesions at
the microscopic scale.31 The former task can utilize a larger field of view at the expense of a
degraded spatial resolution, whereas the latter task can utilize a smaller spatial resolution at the
expense of a degraded field of view. But this tradeoff may be unacceptable in other situations; the
surgeon may instead want to monitor the boundary of their resection against the path of a nearby
nerve, utilizing a more aggressive margin where tissue preservation is not necessary and a less
aggressive margin where it is.32–34 A larger field of view may be required to frame both the lesion
and the nerve, but a smaller spatial resolution may be required to trace the diffuse boundary of
the lesion and the outstretched branches of the nerve. Flexibility is also necessitated in appli-
cations like near-infrared spectroscopy where it may be critical to examine vital quantities,
related perhaps to patient hemodynamics, across particular regions35 or above especially sensi-
tive structures.36,37

The tradeoff between field of view and spatial resolution is exacerbated by the conventional
architecture of single-sensor cameras. The red/green/blue/near-infrared architecture, also known
as the RGB-IR or RGB-NIR architecture, captures three visible channels that facilitate color
imaging of the surgical site and one near-infrared channel that facilitates fluorescence imaging
of a single surgical target. Fabrication entails the formation of silicon photodiodes on a rectan-
gular grid, providing sensitivity from 400 to 1100 nm, followed by deposition of optical filters in
a 2 × 2 pixel pattern, permitting discrimination between blue light, green light, red light, and
near-infrared light [Figs. 1(a) and 1(b)]. This design adds tension to the existing tradeoff between
the field of view and the spatial resolution; each channel is sampled by a quarter of the pixel
array, so each channel’s spatial resolution is limited to a fraction of the pixel array’s spatial
resolution—requiring a further restriction to the field of view to compensate for the spatial
resolution. But it also adds a new dimension to the balancing act; the addition of multiple
near-infrared channels requires the addition of multiple near-infrared pixels, meaning that the
detection of additional surgical targets entails an additional tradeoff with the field of view and
the spatial resolution.

The tradeoff between field of view, spatial resolution, and channel count arises because the
sensor makes observations over a finite area and at a finite spatial sampling rate, so an improve-
ment in these three quantities can be achieved by modulating either the area or the spatial sam-
pling rate. One option is to increase the area, sizing up the sensor while fixing the pixel’s size.
As the sensor becomes larger, manufacturing tolerances become looser, decreasing the spatial
uniformity, and defects become likelier, increasing the failure rate. This may entail additional
calibration of the sensor in the best case and outright replacement in the worst, increasing cost
and decreasing reliability.39 An increase in sensor size also demands an increase in camera size,
which can make some instruments, like cart-based systems for open surgeries, less convenient
and can make other instruments, like endoscopic systems for minimally invasive surgery, impos-
sible. Another option is to increase the spatial sampling rate, sizing down the pixels while fixing
the sensor’s size. As the pixels become smaller, their dynamic range is reduced on both the low
end and the high end; a smaller number of photons passes through each photodiode due to the
reduced cross-sectional area, degrading sensitivity to small signals, and a smaller number of
photoelectrons can accumulate on each photodiode due to the reduced junction capacitance,
degrading sensitivity to large signals.39 Additionally, their noise performance is harmed both
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spatially and temporally; since smaller pixels require smaller features, it becomes difficult to
implement the isolation trenches that reduce crosstalk between pixels,40 causing photoelectrons
to stochastically migrate between pixels, and the pinned photodiodes that reduce image lag
between frames,41 causing photoelectrons to stochastically migrate between frames.

A solution to the original tradeoff between field of view and spatial resolution and the
additional tradeoff with channel count is posed by an alternative architecture for single-sensor
cameras. The bioinspired long-pass/short-pass architecture captures three visible channels that
facilitate color imaging of the surgical site and three near-infrared channels that facilitate fluo-
rescence imaging of three surgical targets. There are two key differences between the RGB-IR
sensor and the bioinspired sensor. First, an RGB-IR sensor utilizes a single layer of silicon
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Fig. 1 The structure and function of an RGB-IR camera and a bioinspired camera. (a) A red/green/
blue/near-infrared camera (or RGB-IR camera) is constructed from a single layer of silicon photo-
diodes topped with an additional layer of four different absorptive filters. The silicon photodiodes
exhibit a broadband response spanning the visible (VIS) and near-infrared (NIR), while the absorp-
tive filters exhibit a relatively narrow transmission tuned to blue light, green light, red light, or NIR
light. Since each photodiode absorbs all colors of light while each absorptive filter passes a differ-
ent color of light, the camera can provide, in every 2 × 2 pixel neighborhood, three observations in
the VIS spectrum and one observation in the NIR spectrum. (b) The quantum efficiencies
presumed for the RGB-IR camera that was used in this study, illustrating the tetrachromatic
(“four-color”) vision offered. The curves have been adopted from Ref. 28, consistent with the
methods in Ref. 38. (c) A bioinspired long-pass/short-pass camera (or bioinspired camera) makes
two substitutions compared with an RGB-IR camera: First, it replaces the single layer of silicon
photodiodes with three layers of such photodiodes (each sensitive to shorter wavelength, longer
wavelengths, or intermediate wavelengths), and second, it replaces the layer of four different
absorptive filters with a layer of two different interferences filters (each serving as a short-pass
filter tuned for VIS light or a long-pass filter tuned for NIR light). Since each photodiode absorbs
and each interference filter passes a different color of light, the camera can provide, in every
2 × 1 pixel neighborhood, three observations in the VIS spectrum and three observations in the
NIR spectrum. (d) The quantum efficiencies evaluated for the bioinspired camera that was used
in this study, illustrating the hexachromatic (“six-color”) vision offered. The curves have been
adopted from Ref. 28.
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photodiodes with sensitivity across the visible and near-infrared, whereas the bioinspired sensor
utilizes three layers of silicon photodiodes. Longer wavelengths penetrate farther than shorter
wavelengths upon transmission through silicon, so the bottommost photodiodes are more sen-
sitive to longer wavelengths and the topmost photodiodes are more sensitive to shorter wave-
lengths [Fig. 1(c)]. Second, an RGB-IR sensor utilizes four optical filters that discriminate blue,
green, red, and near-infrared, whereas the bioinspired sensor utilizes two optical filters. A short-
pass filter passes visible light below 700 nm and rejects longer wavelengths, whereas a long-pass
filter passes near-infrared light above 700 nm and rejects shorter wavelengths [Fig. 1(c)]. As a
result of these design choices, the three photodiodes under the short-pass filters detect the three
colors of visible light, whereas the three photodiodes under the long-pass filters detect three
“colors” of near-infrared light [Figs. 1(c) and 1(d)]. This architecture does not obviate the trade-
off between field of view and spatial resolution, but it does weaken the tradeoff. An RGB-IR
sensor makes one observation of each channel in each 2 × 2 pixel block, whereas the bioinspired
sensor makes two observations of each channel in each 2 × 2 pixel block. Likewise, it does not
eliminate the impact of additional spectral channels on the field of view and spatial resolution,
but it does lessen the impact. An RGB-IR sensor suffers in field of view and spatial resolution for
every single channel added, whereas the bioinspired sensor suffers in field of view and spatial
resolution for every three channels added.

3 Demosaicing Routine

Since a surgeon who has turned their eyes toward the surgical field will perceive the color of light
at every point on the patient, that surgeon, when instead directing their attention toward a sur-
gical display, will expect to see the color of light at every point in the video feed (Fig. 2, top row).

Fig. 2 The need for demosaicing routines. While blue light, green light, red light, and near-infrared
light are reflected from every point in a scene (as illustrated in the unmosaiced image in the top row
with all pixels known), these colors of light are not observed at every pixel in a single-sensor im-
aging system (as illustrated in the mosaiced images in the middle row with some pixels known and
others unknown). As a result, demosaicing routines must generate demosaiced images (like those
in the bottom row) that can be displayed to an end-user or consumed by a computer. Yet even
though the loss of spatial information during the imaging process can be mitigated by the demo-
saicing routine, the loss of spectral information cannot. Consequently, an RGB-IR camera will only
be able to provide three VIS channels and one NIR channel, even after the demosaicing routine
has been applied, and a bioinspired camera will still be able to provide three VIS channels and
three NIR channels.
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However, single-sensor cameras are rarely able to observe every color at every point as has been
noted with the RGB-IR sensor, which captures each channel at just one-quarter of its pixels, and
the bioinspired sensor, which captures each channel at only one-half of its pixels (Fig. 2, middle
row). This necessitates a demosaicing routine that can estimate the unmosaiced image that would
be perceived by the surgeon with a demosaiced image that can actually be shown to them upon
analysis of the mosaiced image captured by the imaging system (Fig. 2, bottom row).

The need for a demosaicing routine that can recover the intensity at some pixels because the
imaging system cannot sense the intensity at those pixels implies a loss in spatial resolution, but
if a demosaicing routine was discovered that could infer, without error, the pixels where a chan-
nel is unknown from the pixels where a channel is known, then it would be impossible to dis-
tinguish between an unmosaiced image captured at a high spatial resolution and a demosaiced
image captured at a low spatial resolution—suggesting that the demosaicing routine recovered
the spatial resolution. Of course, all demosaicing routines rely on assumptions about the scene,
assumptions that cannot possibly hold for every scene, and will thus be characterized by some
nonzero error. However, a demosaicing routine can be designed, with prior knowledge, to make
the appropriate assumptions about the scene—permitting that demosaicing routine to recover
structure that is observed only in part. In this way, demosaicing routines cannot improve spatial
resolution in a deterministic sense—enhancing the rate at which observations are made without
any error—but can improve spatial resolution in a stochastic sense—enhancing the rate at which
observations are made with bounded error. As a result, the demosaicing routine can weaken the
tradeoff between spatial resolution, field of view, and channel count by permitting a lower spatial
resolution to be accepted during the imager design and a higher spatial resolution to be recovered
during the image processing.

Demosaicing routines have received considerable interest in the context of conventional im-
aging where it is possible to exploit statistical models that describe, e.g., how likely a color is to
occur or how the amount of red and blue light correlates with the amount of green light.42,43 But
they have received little interest in the context of biomedical imaging where it is not clear that
such statistical models are appropriate or accurate. First, a surgeon is often just as interested in a
rare-looking structure as a common-looking one since the rare-looking structure may represent a
pathological condition. As a result, a bias away from rare colors toward common ones could
cause the surgeon to miss a rare-looking structure that is relevant to the operation. Second, the
visible channels and the near-infrared channels will be uncorrelated by design since the visible
channels represent what the surgeon would normally perceive and the near-infrared channels
represent what the surgeon would not. As a result, a bias toward correlated channels will corrupt
the information in each channel. Toward this end, the conservative assumption should be made
that the channels are statistically independent.

A family of demosaicing routines that is compatible with dual-mode visible/near-infrared
imaging systems like the RGB-IR sensor and the bioinspired sensor but does not make assump-
tions on the correlation between the visible channels and the near-infrared channels has already
been proposed in Ref. 38. These demosaicing routines recognize that each channel is fully
defined by a complicated function of two variables, the row number and column number, that
can be locally approximated by much simpler interpolating polynomials taken in one of several
variations. By choosing between polynomials or splines defined in one or two dimensions and of
the first or third degree, the designer of an imaging system can select a demosaicing routine that
best matches the scenes of interest. For example, polynomials, which can be fitted to small por-
tions of a row, column, or image without undue assumptions on the image’s derivatives, suit
those surgical sites where the transition between tissues is abrupt or erratic, whereas splines,
which are usually fitted to the entire span of a row, column, or image under restrictive assump-
tions on the image’s derivatives, suit the remaining surgical sites where tissues transition con-
tinuously and smoothly. Likewise, polynomials and splines in one dimension may not recognize
features with an indefinite orientation that those in two dimensions would, like a blood vessel
perfused with indocyanine green that snakes in every direction through the surgical site, and
polynomials and splines of the first degree may not reconstruct features with rapidly-varying
intensities that those of third degree would, like a nerve labeled with Oxazine 4 that branches
densely within the surgical site. However, polynomials and splines in one dimension or of the
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first degree can be fitted with far less data than those in two dimensions or of the third degree,
making them more robust to noise.

4 Comparing the Imaging Systems and Demosaicing Routines

An imaging system operates at its spatial resolution when the imaging system can just distin-
guish two point sources. The imaging system, under such conditions, will see two intensity
maxima produced by the point sources and one intensity minimum between them—three inten-
sity extrema in total. The spatial resolution may be fundamentally limited by the aperture stop of
the imaging lens, which determines the diffraction-limited spot size, but it may also be limited by
the image sensor and demosaicing routine.

The image sensor observes the intensity at a subset of known pixels, so the spatial resolution
can be upper bounded by the smallest neighborhood of known pixels that will permit discrimi-
nation of two point sources. For example, an image sensor without a filter array, where the pixels
belong to a single channel, can resolve two point sources in the span of three pixels since the
image sensor can identify the three intensity extrema associated with the point sources from the
three observations taken at adjacent pixels. However, an image sensor with a filter array, where
the pixels belong to multiple channels, may require additional pixels to resolve the point sources
since three pixels from any given channel may be interspersed with one or more pixels from a
different channel. In turn, the demosaicing routine predicts the intensity at the remaining subset
of unknown pixels, so the spatial resolution can be enhanced if a smaller neighborhood of both
known and unknown pixels can still permit discrimination of two point sources. For example, a
demosaicing routine that was capable of divining the value of every unknown pixel from the
values at the known pixels could identify the three intensity extrema associated with two point
sources even if they occurred at unknown pixels. However, a demosaicing routine that was
forced to guess, at random, could only identify the three intensity extrema associated with the
point sources if they occurred at known pixels.

It is worth noting, though, that the spatial resolution of the image sensor depends on the
orientation of the point sources since the observations of the known pixels may not be equally
spaced along rows, columns, and diagonals and that the spatial resolution enhancement from the
demosaicing routine depends on the context of the point sources since the predictions of the
unknown pixels may not be equally valid in all situations. What’s more, the spatial resolution
will further vary from channel to channel because the wavelength-dependent optical properties
associated with the tissue44,45 will induce a wavelength-dependent pattern in the light intensity46–48

as different wavelengths penetrate different distances—meaning that signals may be generated
by, but must also be visualized from, sources at up to several millimeters depth when working in
the near-infrared spectrum.49 This suggests that the spatial resolution of the imaging system
should not be judged from images of point sources in a contrived configuration but should
instead be judged from images of the real world, in all its complexity. This suggests, in con-
sequence, that the spatial resolution cannot be defined in the traditional sense since image-guided
surgery offers no analog to the point source.

Fortunately, the spatial resolution can be evaluated in a different way. Consider an image
captured by a division-of-focal plane image sensor and processed by a demosaicing routine:
if the image sensor and demosaicing routine can reproduce small features, then any unmosaiced
images and demosaiced images should exhibit small deviations—indicating that a proxy for the
spatial resolution is provided by the error between the two images. In this way, a comparison of
two imaging systems or demosaicing routines can be facilitated by a comparison of the actual
deviation between the unmosaiced image that describes a scene and the demosaiced images that
are ultimately observed. This comparison can be done with the sum of absolute errors, taken over
all pixels, which accounts for both the vanishing error from known pixels captured by the im-
aging system and the nonvanishing error from unknown pixels filled in by the demosaicing
routine, or it can be done with the mean of absolute errors, taken over unknown pixels, which
downplays the role performed by the imaging system in favor of that performed by the demo-
saicing routine.38 Since the variation in these two measures tracks the variation between the
unmosaiced image and the demosaiced image in a simple and proportional manner, they provide
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some transparency into how a computer program developing a surgical strategy will be affected
by the combined effect of the imaging system and demosaicing routine. Alternatively, a com-
parison of two imaging systems or demosaicing routines can be facilitated by a comparison of
the perceived deviation between the unmosaiced image and the demosaiced images. This can be
done with the 99th percentile of the structural dissimilarity index, taken over unknown pixels,
which describes the change in texture in the vicinity of those pixels filled in by the demosaicing
routine, or the 99th percentile of the color difference, also taken over unknown pixels, which
describes the change in color at those pixels.38 Since the variation in these two measures tracks
the variation between the unmosaiced image and the demosaiced image in a complex but per-
ceptually consistent manner, they provide a window into how a human observer thinking through
their own surgical approach will be affected as an image is captured and processed.

While the proposed measures of actual deviation are well defined for both the visible channels
and the near-infrared channels, the proposed measures of perceived deviation do require some
special consideration. Since the RGB-IR camera captures a single near-infrared channel, it returns
images in a monochromatic format that precludes display in full color, while the bioinspired cam-
era, which instead captures a triplet of near-infrared channels, returns images in a trichromatic
format that permits such a display.28 That being said, the 99th percentile of the structural dissimi-
larity can be pooled across the visible channels or the near-infrared channels so that it can be
defined regardless of the channel count, whereas the 99th percentile of the color difference must
be computed over three visible channels or three near-infrared channels so that it is only defined for
a trichromatic channel configuration.38 The structural dissimilarity can thus be presented for both
the visible channels and the near-infrared channels from both the RGB-IR sensor and the bioins-
pired sensor, but the color difference must only be presented for the visible channels from the
RGB-IR sensor in addition to the visible channels and near-infrared channels from the bioinspired
sensor. In this way, the structural dissimilarity for the near-infrared channels describes the change
in texture perceived in those channels by a human operator that is viewing them in either a mono-
chromatic format or a trichromatic format, whereas the color difference for the near-infrared chan-
nels describes the change in color perceived in those channels by a human operator viewing them
in a trichromatic format. Note that the 99th percentile acts as an upper bound on these metrics,
ensuring that the rare pixels associated with disease do not perform worse on them.

5 Preclinical Dataset

To explore the performance of the described image sensors and demosaicing routines on a scene
that approaches that of image-guided surgery, images from a preclinical model of breast cancer
were collected and analyzed. This study followed protocols approved by the University of
Illinois Institutional Animal Care and Use Committee.

5.1 Data Collection

A female mouse (J:NU, The Jackson Laboratory; 2 to 3 months, 20 to 25 g) with a breast tumor
(4T1, American Type Culture Collection; delivered via subcutaneous injection and grown to
1-cm diameter) was used in the study and was imaged before, during, and after tumor resection.
IRDye 800CW Maleimide (100 μL at 11.91 μg per mL phosphate-buffered saline) was admin-
istered via injection into the retro-orbital sinus and allowed to accumulate in the tumor over a
24-h period. The mice were anesthetized via isoflurane inhalation; the tumors were imaged
through the skin; the mice were sacrificed via cervical dislocation; and the tumors were imaged
through an incision.

A custom camera28 including a stacked photodiode image sensor with no filter array was used
to capture images; the camera was equipped with an emission filter (NF03-785E, Semrock).
The mouse was first illuminated by a white light source (LED-6500T, Genaray, with Cool Mirror
Film 330, 3M), and an image was captured—providing a three-channel VIS image [Fig. 3(a)].
The mouse was then illuminated by a near-infrared source (I0785MU6000M4S, Innovative
Photonic Solutions), and another image was captured—providing a three-channel NIR image
[Fig. 3(a)]. The spectral power distribution of the white light source was restricted to wavelengths
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Fig. 3 The experimental setup and unmosaiced images for the preclinical dataset along with
quantile functions for the perceptual metrics. (a) A mouse with a breast tumor was administered
IRDye 800CW Maleimide so that the breast tumor could be identified with near-infrared fluores-
cence. Raw images were collected using a stacked photodiode image sensor equipped with no
filter array, with illumination provided by either a VIS source alone or an NIR source alone.
Unmosaiced images were then constructed by stacking the images taken under white light illumi-
nation alone and the images taken under near-infrared illumination alone. (In this illustration, the
light sources and the image sensor have been positioned for conceptual clarity; during the actual
experiment, though, the light sources and the image sensor were all positioned above the mouse.)
(b) Three unmosaiced images were included in the dataset: two images showing the tumor before
surgery through the skin and one image showing the tumor during surgery through an incision.
Each image consisted of one frame and 399 × 144 pixels. (c) Quantile plots for visible color differ-
ence (VIS ΔE ), visible dissimilarity index (VIS DSSIM), near-infrared color difference (NIR ΔE ),
and near-infrared dissimilarity index (NIR DSSIM) were generated for an RGB-IR imaging system
with bilinear demosaicing and a bioinspired imaging system with bilinear demosaicing. Each point
indicates the proportion of pixels that have been assigned a value for a metric that is less than or
equal to a given value for that metric. NIR ΔE could not be computed for the RGB-IR imaging
system since only one of three total near-infrared channels could be captured by that camera.
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below 700 nm, so the images collected under white light illumination could be treated like images
collected from a stacked photodiode image sensor covered entirely with short-pass filters.
Likewise, the spectral power distribution of the near-infrared source was restricted to wavelengths
above 700 nm and the spectral power distribution of the near-infrared fluorophore experienced a
Stokes shift to even longer wavelengths, so the images collected under near-infrared illumination
could be treated like images collected from a stacked photodiode image sensor covered entirely
with long-pass filters. By stacking the three-channel white-light images and the three-channel near-
infrared images and applying a pre-processing routine to the result, a full-resolution unmosaiced
image could thus be formed with three short-pass observations and three long-pass observations at
every pixel [Fig. 3(a), Supplementary Material].

This process yielded three unmosaiced images that were included in the dataset [Fig. 3(b)]: a
pair of preoperative images of the mouse’s lateral aspect and ventral aspect, portraying the tumor
through unbroken skin, and a single intraoperative image, portraying the tumor through an inci-
sion into the skin. Each image consisted of one frame and 399 × 144 pixels derived from a video
consisting of 100 frames and 448 × 674 pixels; the frame was taken as the first frame of the
video since the remaining frames contained no additional action, and the region-of-interest was
taken around the mouse since the remaining pixels contained no additional content. This ensured
that the analysis was restricted to, and the conclusions reflect, the portion of the scene that is
most relevant to image-guided surgery.

Two mosaiced images were produced after each unmosaiced image in the dataset was prop-
erly sampled: (1) the mosaiced image that a bioinspired camera would see, with three short-pass
observations and three long-pass observations covering different halves of the array, and (2) the
mosaiced image than an RGB-IR camera would see with blue observations, green observations,
red observations, and near-infrared observations covering different quarters of the array. A set of
demosaiced images were then computed by applying demosaicing routines based on (a) one-
dimensional linear polynomials/splines, (b) one-dimensional cubic polynomials, (c) one-
dimensional cubic splines, (d) two-dimensional cubic polynomials, and (e) two-dimensional
cubic splines. A comparison of the unmosaiced image and these demosaiced images at a subset
of pixels identified as the foreground finally enabled an evaluation of the imaging systems and
demosaicing routines (Supplementary Material).

5.2 Data Analysis

Tables 1 and 2 present the sum of absolute errors, mean absolute errors, structural dissimilarities,
and color differences when examining the preclinical dataset across image sensors and demo-
saicing routines. By comparing the columns for the bioinspired sensor with those for the RGB-
IR sensor, it can be seen that the bioinspired sensor outperforms the RGB-IR sensor in every
metric; this conclusion is consistent with the results from Ref. 38.

To observe how the demosaicing routine influenced the actual error once a given sensor was
selected, a rank was assigned to each demosaicing routine according to its performance on the
sum of absolute errors or the mean absolute error, with the sum or the mean computed over the
pooled visible channels or the pooled near-infrared channels. For both the bioinspired sensor and
the RGB-IR sensor, the sum of absolute error and the mean absolute errors were minimized with
bicubic polynomial interpolation; however, the bioinspired sensor yielded better performance
from a two-dimensional routine for the visible channels and a one-dimensional routine for the
near-infrared channels, whereas the RGB-IR sensor yielded better performance from a one-
dimensional routine regardless of the channels of interest.

To further explore how this design choice affected the perceived error, an individual rank was
assigned to each demosaicing routine according to its performance on each perceptual metric,
and an average rank was computed for each demosaicing routine over all perceptual metrics.
The numbers from this process, when compared across demosaicing routines for an individual
sensor, facilitate the ranking of the demosaicing routines assuming, first, that visible and near-
infrared spectra are equally important and, second, that color and texture reproduction are also
equally important. For both sensors, it was found that a two-dimensional bicubic polynomial
demosaicing routine performed the second best among all routines whereas a one-dimensional
bicubic polynomial demosaicing routine performed the best.
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Figure 3(c) presents seven quantile functions corresponding to the four perceptual error met-
rics (visible color difference, visible structural dissimilarity, near-infrared color difference, and
near-infrared structural dissimilarity) evaluated for the two sensors and their associated bilinear
demosaicing routines. Each point on these curves indicates the proportion of pixels (the “quan-
tile” indicated along the x-axis) that have been assigned a value for a metric that is less than or
equal to a given value for that metric (the “perceptual error” indicated along the y-axis); there-
fore, a vertical drop in the curve indicates, not just a new bound on a single pixel, but also a new
bound on an entire subpopulation of pixels.

For the visible color difference, the quantile function for the bioinspired sensor lies above the
quantile function for the RGB-IR sensor for the ∼20% of pixels with the smallest color differ-
ence but falls below the quantile function for the RGB-IR sensor for the remaining ∼80% of
pixels with a larger color difference. However, the transition between these regimes lies near a
color difference of 1.32 to 1.33, which narrowly exceeds the just noticeable difference of 1.00,
indicating that pixels where the bioinspired sensor underperforms the RGB-IR sensor will be
largely undetectable to a human observer. For the visible structural dissimilarity index and the
near-infrared structural dissimilarity index, the story is simpler, with the quantile functions for
the bioinspired sensor lying wholly below the quantile functions for the RGB-IR sensor. As a
result, the transition to a bioinspired sensor from an RGB-IR sensor offers a maximum improve-
ment of 28% for the visible color difference, 54% for the visible structural dissimilarity index,
and 80% for the near-infrared structural dissimilarity index, with any impairment remaining
nearly imperceptible.

It is interesting to note that the gap between the quantile function for the bioinspired sensor
and the quantile function for the RGB-IR sensor generally increases as the quantile increases,
indicating that the image undergoes the largest improvement in quality at those pixels that exhibit
the largest amount of error. A large error during demosaicing is typically associated with a boun-
dary between unlike pixels, which may further correspond to a boundary between diseased tissue
and healthy tissue. As a result, a substantial decrease in the maximal error may permit better
discrimination between the most clinically relevant tissue types.

6 Clinical Dataset

To explore the performance of the image sensors and demosaicing routines on a scene that accu-
rately reflects that of image-guided surgery, images from clinical cases of breast cancer were
collected and analyzed. This study followed protocols approved by the Institutional Review
Board at the University of Illinois at Urbana-Champaign and the Agency for Drugs and
Medical Instruments in Skopje, Republic of North Macedonia, and it included only those
patients who provided informed consent.

6.1 Data Collection

Seven women [58� 12 years (mean ± standard deviation)] with breast tumors (diagnosed as
early or progressive) were recruited into the study and were imaged during sentinel lymph node
mapping. Technetium-99m-labeled human serum albumin colloid (99mTc-HSA colloid;
834 μCi), indocyanine green (ICG; 2 mL at 0.5 mg ICG per mL saline), and methylene blue
(MB; 1 mL at 10 mg MB per mL water) were administered via injection into the tumor area and
allowed to accumulate in the lymph nodes over a 10- to 15-min period. The patient was placed
under general anesthesia; an incision was made into the tumor area; sentinel lymph nodes were
identified via radioactivity and visible contrast; and sentinel lymph nodes were imaged via
near-infrared fluorescence.

A custom camera28 including a stacked photodiode image sensor with a bioinspired filter
array was used to capture images; the camera was equipped with an emission filter (NF03-
785E, Semrock). The patient was illuminated by a white light source (a surgical lamp with
Cool Mirror Film 330, 3M) and a near-infrared source (BWF2-780-15-600-0.37-SMA,
B&W Tek), and an image was captured—with short-pass observations at one-half of the pixels
and long-pass observations at the other half of the pixels [Fig. 4(a)]. Spatial averages for
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each channel were then computed in nonoverlapping blocks according to Ref. 50 and a prepro-
cessing routine was applied to the result, providing a reduced-resolution unmosaiced image with
a short-pass observation and a long-pass observation at every pixel [Figs. 4(a), Supplementary
Material].

This process yielded one unmosaiced video that was included in the dataset [Fig. 4(b)],
showing a surgeon identifying and removing a sentinel lymph node and validating resection
with a gamma probe through an incision in the patient. The video consisted of 384 frames and
640 × 368 pixels. Production of two mosaiced videos, computation of a set of demosaiced
videos, and comparison with the unmosaiced video then followed those steps applied to the
preclinical dataset.

6.2 Data Analysis

Tables 3 and 4 present the sum of absolute errors, mean absolute errors, structural dissimilarities,
and color differences when examining the clinical dataset across image sensors and demosaicing
routines. As with the previous dataset, it can be confirmed that the bioinspired sensor outper-
forms the RGB-IR sensor in every metric; that being said, there are some changes to the demo-
saicing method that should be optimally paired with each image sensor.

For the bioinspired sensor, two-dimensional bicubic polynomial interpolation minimized the
sum of absolute errors and the mean absolute error for both the visible spectrum and the near-
infrared spectrum. Meanwhile, two-dimensional bicubic polynomial interpolation again took
first when evaluating the color difference and structural dissimilarity via the previously proposed
average rank method. For the RGB-IR sensor, one-dimensional bicubic polynomial interpolation
and bilinear interpolation minimized the actual error for the visible spectrum and the near-
infrared spectrum, respectively. Likewise, one-dimensional bicubic polynomial interpolation
once more took first when evaluating the perceived error.

The top row of Fig. 4(c) presents seven quantile functions corresponding to the four percep-
tual error metrics (visible color difference, visible structural dissimilarity, near-infrared color
difference, and near-infrared structural dissimilarity) evaluated for the two sensors and their
associated bilinear demosaicing routines. The bottom row of Fig. 4(c) then presents seven curves
describing the percent change in the quantile function when transitioning from the bilinear
demosaicing routine for a given sensor to either a one-dimensional bicubic polynomial demo-
saicing routine for an RGB-IR senor or a two-dimensional bicubic polynomial demosaicing
routine for a bioinspired sensor.

As with the preclinical dataset, the quantile function associated with the bioinspired sensor’s
visible color difference lies above the quantile function for the RGB-IR sensor except at the ∼1%
of pixels with a <0.062 color difference, and the quantile functions associated with the bioins-
pired sensor’s visible structural dissimilarity and near-infrared structural dissimilarity lie above
the quantile function for the RGB-IR sensor for all quantiles. Consequently, the transition
to a bioinspired sensor from an RGB-IR sensor offers a maximum improvement of 45% for
the visible color difference, 59% for the visible structural dissimilarity index, and 75% for
the near-infrared structural dissimilarity index, with any impairment remaining completely
imperceptible.

Since bilinear interpolation does not necessarily optimize performance, though, it is relevant
to consider how the error changes during a transition from this baseline to a more sophisticated
demosaicing routine. For the bioinspired camera, a transition from bilinear interpolation to two-
dimensional bicubic polynomial interpolation yielded improvements in the visible spectrum,
with the visible color difference and the visible structural dissimilarity decreasing across all
quantiles. However, the same transition yielded mixed results in the near-infrared spectrum, with
the near-infrared color difference increasing for the bottom 98% of pixels and the near-infrared
structural dissimilarity increasing for the bottom 38% of pixels. For the RGB-IR camera, a tran-
sition from bilinear interpolation to one-dimensional bicubic polynomial interpolation did not
yield a decisive improvement in either region of the spectrum. While the visible structural
dissimilarity decreased for all of the pixels, the visible color difference increased for 87% of
the pixels; furthermore, the near-infrared structural dissimilarity also increased for 87% of the
pixels. It is worth noting that the change in the perceived error during this transition between
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Fig. 4 The experimental setup and unmosaiced images for the clinical dataset along with quantile
functions for the perceptual metrics. (a) Seven women with breast cancer were administered
indocyanine green and methylene blue so that any sentinel lymph nodes could be identified with
near-infrared fluorescence. Raw images were collected using a stacked photodiode image sensor
equipped with a bioinspired filter array, with illumination provided by both a VIS light source and an
NIR source. Unmosaiced images were then constructed by taking spatial averages within each
channel across 2 × 2 pixel blocks. (In this illustration, the light sources and the image sensor have
been positioned for conceptual clarity; during the actual experiment, though, the visible light
source was positioned above the patient, whereas the near-infrared light sources and the image
sensor were all positioned to the side of the patient.) (b) One unmosaiced video was included in
the dataset, showing the surgeon identifying and removing a sentinel lymph node before validating
resection with a gamma probe. The video consisted of 384 frames and 640 × 368 pixels; the inten-
sities in the visible frames and the near-infrared frames were scaled up by 1.5× and 3.0×, respec-
tively, for display here. (c, top row) Quantile plots for visible color difference (VIS ΔE ), visible
dissimilarity index (VIS DSSIM), near-infrared color difference (NIR ΔE ), and near-infrared dis-
similarity index (NIR DSSIM) generated for an RGB-IR imaging system with bilinear demosaicing
and a bioinspired imaging system with bilinear demosaicing. Each point indicates the proportion of
pixels that have been assigned a value for a metric that is less than or equal to a given value for
that metric. NIR ΔE could not be computed for the RGB-IR imaging system since only one of three
total near-infrared channels could be captured by that camera. (c, bottom row) The percent change
in the metric that was observed at each quantile after switching the RGB-IR imaging system from
bilinear demosaicing to one-dimensional bicubic polynomial demosaicing and after switching the
bioinspired imaging system from bilinear demosaicing to two-dimensional bicubic polynomial
demosaicing.
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demosaicing routines was more negative for the bioinspired sensor than the RGB-IR sensor
across all quantiles, indicating that such a transition is more likely to benefit the bioinspired
sensor than the RGB-IR sensor. It is also worth noting that the change in the perceived errors
trended negative for both sensors at the largest quantiles, indicating that pixels with low error
might suffer from the transition but that pixels with high error were likely to benefit.

7 Conclusion

To maximize the patient’s outcome and the surgeon’s experience, the imaging systems used
for near-infrared fluorescence image-guided surgery must capture multiple spectral channels
spanning the visible and near-infrared and must present those spectral channels across a large
field of view and with a small spatial resolution. However, division-of-focal-plane imaging
systems, which are quick, compact, and free from coregistration error, are also characterized
by a tradeoff between the channel count on one hand and the field of view and spatial resolution
on the other.

Some choices made during the design of the imaging system can have an obvious effect on
this tradeoff, permitting a larger number of channels to be observed across a smaller number of
pixels, while other choices made during the implementation of the demosaicing routine may
have a subtler effect, enabling the recovery of some features from sparse observations.
Unfortunately, the combined impact of the imaging system and the demosaicing routine depends
on the specifics of the scene, including the types of structures that are present and the location
and orientation of those structures in the field of view.

To permit an exploration of the design space for imaging systems, this study presented
combinations of two imaging systems and five demosaicing routines, each combination provid-
ing a fixed number of spectral channels, and applied those combinations across two datasets of
different clinical relevance, each dataset with a fixed field of view. With the spectral channels
and the field of view fixed in this way, the spatial resolution would vary for each combination
of imaging system and demosaicing routine and could be observed in the error between the
ground-truth (or unmosaiced) image of the scene and the estimated (or demosaiced) image
of the scene.

In preclinical and clinical contexts, the performance of a bioinspired imaging system, which
utilizes three layers of photodiodes and two types of spectral filters, exceeded that of RGB-IR
imaging systems, which utilize one layer of photodiodes and four types of spectral filters, in both
the spectral domain (channel count) and the spatial domain (field of view and spatial resolution).
Not only did the bioinspired imaging system capture six channels when the RGB-IR imaging
system captured only four, but the bioinspired imaging system also produced more accurate
images of a scene than the RGB-IR imaging system across every single metric. Notably, this
difference in accuracy was observed in both absolute measures of error and perceptual measures
of error, indicating that a computer program that is sensitive to an absolute change in the image
and a human observer that is sensitive to a perceived change in the image will both benefit from
an improvement to the imaging system.

The performance of the bioinspired sensor and the RGB-IR sensor was optimized in
many cases with a bicubic polynomial demosaicing routine, with the bioinspired sensor favoring
a two-dimensional routine and the RGB-IR sensor favoring a one-dimensional routine; however,
the results indicate that no demosaicing routine performs optimally in all contexts, with the
bioinspired sensor being better served by a one-dimensional bicubic polynomial routine in some
cases and the RGB-IR sensor being better served by a bilinear routine (Table S1 in the
Supplementary Material). This suggests that performance may be optimized by selecting a differ-
ent demosaicing routine for different channels, or even for different regions of interest—using,
e.g., a more complex two-dimensional bicubic polynomial routine for channels or regions with
high signal-to-noise ratios, saturated colors, or complex textures and a simpler bilinear routine
elsewhere. Selection of the routine, or blending between routines, could be accomplished with
a simple learned model.

From an engineering perspective, it is more difficult to transition from a traditional RGB-IR
image sensor to a bioinspired image sensor than it is to migrate from a simple bilinear
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demosaicing routine to a bicubic polynomial demosaicing routine. However, the increase in
effort is commensurate with the decrease in error, with changes to the image sensor yielding
a greater reduction in the mean absolute error than changes to the demosaicing routine.
Notably, the pixels that had experienced the largest reduction in error were the pixels that had
already exhibited the largest error. A large error between the images indicates an abrupt change
in the scene, which may, in turn, indicate an abrupt change in a tissue; as a result, the pixels with
the largest errors are likely to be the pixels with the most relevance, making the large reduction in
error invaluable to the clinical staff.

Of course, the RGB-IR image sensor benefits from a technological head start over the bio-
inspired image sensor that permits RGB-IR pixels to be constructed with smaller sizes and larger
fill factors than bioinspired pixels. This gives the RGB-IR image sensor a built-in advantage over
the bioinspired image sensor when it comes to spatial resolution or field of view, which was not
accounted for in this study. Nonetheless, there is substantial room for improvement in the
enabling technologies for the bioinspired image sensor that suggests ample space for engineers
interested in closing this performance gap.
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