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ABSTRACT. Significance: Wavelength selection from a large diffuse reflectance spectroscopy
(DRS) dataset enables removal of spectral multicollinearity and thus leads to
improved understanding of the feature domain. Feature selection (FS) frameworks
are essential to discover the optimal wavelengths for tissue differentiation in DRS-
based measurements, which can facilitate the development of compact multispec-
tral optical systems with suitable illumination wavelengths for clinical translation.

Aim: The aim was to develop an FS methodology to determine wavelengths with
optimal discriminative power for orthopedic applications, while providing the frame-
works for adaptation to other clinical scenarios.

Approach: An ensemble framework for FS was developed, validated, and com-
pared with frameworks incorporating conventional algorithms, including principal
component analysis (PCA), linear discriminant analysis (LDA), and backward inter-
val partial least squares (biPLS).

Results: Via the one-versus-rest binary classification approach, a feature subset of
10 wavelengths was selected from each framework yielding comparable balanced
accuracy scores (PCA: 94.8� 3.47%, LDA: 98.2� 2.02%, biPLS: 95.8� 3.04%,
and ensemble: 95.8� 3.16%) to those of using all features (100%) for cortical bone
versus the rest class labels. One hundred percent balanced accuracy scores were
generated for bone cement versus the rest. Different feature subsets achieving
similar outcomes could be identified due to spectral multicollinearity.

Conclusions: Wavelength selection frameworks provide a means to explore
domain knowledge and discover important contributors to classification in spectros-
copy. The ensemble framework generated a model with improved interpretability
and preserved physical interpretation, which serves as the basis to determine
illumination wavelengths in optical instrumentation design.
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1 Introduction
Surgical procedures involving osteotomies pose risks of breaching into critical neurovascular and
musculoskeletal structures, often leading to operative morbidity or potential mortality. One
related clinical situation involves total hip and knee arthroplasty (THA/TKA) where peripros-
thetic fracture is considered a major complication that requires revision. Studies found that
40% and 54% of primary THA and TKA patients, respectively, encountered at least one major
complication, such as fracture or one minor complication, such as neurovasculature damage, or
both.1,2 Furthermore, with population ageing leading to rapidly growing incidence of primary
arthroplasty, the number of revision surgeries will continue to increase substantially due to lim-
ited implant survivorship. The advanced surgical complexity and higher rates of associated com-
plications have become a prevalent concern that remains to be improved. Within orthopedics,
incidence projections of revision THA/TKA (rTHA/rTKA) to 2030 in the United States alone
have indicated an increase of 43% to 70% and 78% to 182%, respectively, relative to the 50,000
rTHA and 72,000 rTKA cases in 2014. In particular, the patient group aged >55 years is antici-
pated to undergo the highest increase, suggesting that multiple revision surgeries would become
necessary in the coming decades. Some common causes for rTHA include instability (28%),
aseptic loosening (24%), periprosthetic fracture (18%), and prosthetic joint infection (18%).3

Our group previously proposed perspectives to integrating optical sensing into orthopedic
surgical tools4 and demonstrated preliminary results for tissue differentiation based on diffuse
reflectance spectroscopy (DRS) measurements of tissue types encountered in general orthopedic
surgery.5–7 We have examined the possibility of optical integration to guide cement removal—
one of the most technically challenging and time-consuming steps for surgeons during rTHA/
rTKA surgery, especially removal of the distal cement plug. Choices of intraoperative image
guidance modalities, such as endoscopy, fluoroscopy, or ultrasound,8–10 are usually surgeon
dependent, which can be impractical in the operating room. Navigation through the procedure
therefore relies on the surgeon’s experience and the safety measures in the surgical tool. On the
other hand, extraction of well-bound bone cement can be undesirably invasive when creation of
cortical windows is needed via trochanteric osteotomy to visualize the distal plug.11,12 Severe
complications, including cortex perforation (5%) and intraoperative fracture (12%), as well
as overall incomplete implant or cement extraction, can be associated with insufficient familiarity
and expertise in the surgical procedure, while several techniques and instruments, such as
cement-in-cement revision and ultrasonic cement removal, have been employed to ameliorate
the risk.13–15

DRS, as a means of integrated optical guidance in complement to standard imaging modal-
ities, has the potential to assist the orthopedic surgeon with (1) differentiating bone cement16

from biological tissues; (2) informing the cement-to-bone interface as a safety measure to signal
pre-breaching; and (3) informing the bone-to-tissue interface as an indicator to signal post-
breaching during rTHA involving cemented implants. In general, DRS allows for flexible signal
processing due to the abundant information embedded in the spectral data, promoting the interest
to exploit machine learning (ML) algorithms for tissue classification or physiological parameter
extraction.17–20 However, the widely known properties of multicollinearity, redundancy, and
noise affect the accuracy performance due to overfitting of the training data, as well as deterio-
rating interpretability and explainability of the ML model.21 Feature selection (FS), namely to
select an optimal subset of wavelengths to the classification or regression problem, becomes
crucial for understanding the knowledge space, reducing data dimensionality, and finding
accurate ML models. There has been considerable research into wavelength selection in
spectroscopy22–25 as well as generic FS algorithms,26–29 for which novel approaches have been
proposed to process spectral data. For example, a previous study by Gunaratne et al.30 used multi-
class Fisher’s linear discriminant analysis (LDA) to both select features and classify tissue types
in ovine joint tissue specimens for orthopedic applications, achieving 100% accuracy with full
DRS data of 2048 wavelengths from 190 to 1081 nm, 90% with the selected 10 wavelengths,
and 70% with the selected single wavelength. Fanjul-Vélez et al.18 examined the use of spectral
characteristics extraction and principal component analysis (PCA) as a dimensionality reduction
technique on DRS measurements from ex vivo porcine specimens, demonstrating specificity and
sensitivity values of >98%. Another study using FS by Mamouei et al.31 compared different
variations of partial least squares (PLS) with a genetic optimization algorithm to identify
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important spectral regions for predicting lactate concentrations in blood using optical sensing,
resulting in higher accuracy scores with a reduced number of wavelengths.

The advantage of DRS lies in the possibility of instrument miniaturization and easier inte-
gration to surgical workflows. The choice of discrete narrowband light sources in the device can
be inadequate in different applications without a selection methodology. In this work, we present
four distinct FS frameworks to methodologically select an optimal subset of DRS wavelengths
for tissue differentiation in bone-related surgeries, achieving comparable classification accuracy
using substantially fewer wavelengths. The focus is on the tailored FS frameworks to select
wavelength features, which will be implemented as the light source in the optical device for
reduced instrument complexity to guide bone cement removal. The primary aims are thereby
defined as the following: (1) exploring domain knowledge in the orthopedics-related DRS data-
set, (2) determining an optimal subset of DRS wavelengths with sufficient discriminative power
between tissue types by comparing four FS frameworks, and (3) developing a suitable wave-
length selection methodology for adaptation to various clinical scenarios.

2 Materials and Methods
All ex vivo measurements were approved and in compliance with the regulations at Tyndall
National Institute, Cork, Ireland. “Wavelength,” namely the spectral bin width defined by
the spectrometer, is referred to as “feature.” “Sample” refers to each DRS data entry. All data
preprocessing and analysis were implemented in the python programming language version 3.9
(Python Software Foundation32) built from open-source libraries, packages, and dependencies,
including scikit-learn,33 SciPy,34 and SHapley Additive exPlanations (SHAP).35,36

2.1 Specimen Preparation and DRS Data Acquisition
The ex vivo ovine tissue specimens included bone marrow, cartilage, cortical bone, muscle, and
trabecular bone sourced from a local butcher shop, which were sacrificed 2 days prior to delivery
and immediately refrigerated until 2 h before measurements. All measurements were acquired at
room temperature upon delivery, where tissue specimens were unprocessed and kept moist using
saline spray. Muscle specimens were approximately 22 × 23 × 8 cm [Fig. 1(a)]; femoral spec-
imens were ∼23-cm long and 3-cm in diameter with cortical bone layer of ∼5 mm [Fig. 1(b)];

Fig. 1 Ex vivo ovine tissue specimens, including (a) muscle mass; (b) femur containing bone mar-
row, cartilage, cortical bone, and trabecular bone; and (c) bone cement specimen. The EWDRS
system in panel (d) shows the fiber optic probe, connecting to a broadband light source and two
spectrometers, in contact with one tissue specimen. White circle: fiber channel to light source,
green circles: fiber channels to spectrometers, and black circle: not in use.
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and bone cement (PALACOS® R+G pro, Heraeus Medical GmbH, Wehrheim, Germany) spec-
imens were cured and hand-molded into approximately 6 × 5 × 4-cm blocks [Fig. 1(c)] 1 day
earlier. DRS measurements of multiple unique locations were collected from one specimen with
>5 mm apart in grid layout. The total number of tissue specimens and DRS measurements are
summarized in Table 1.

Figure 1(d) shows the extended-wavelength DRS (EWDRS) system, which employed
a dual spectrometer detection configuration across the visible/near-infrared/short-wave infrared
(VIS/NIR/SWIR) spectral range. The 355- to 1100-nm and 1100- to 1850-nm ranges were mea-
sured by QE Pro spectrometer (Ocean Insight B.V., Duiven, The Netherlands) and NIR Quest
spectrometer (Ocean Insight B.V., Duiven, The Netherlands), respectively, with a tungsten-
halogen broadband light source (HL-2000-HP, Ocean Insight B.V., Duiven, The Netherlands)
of emission from 350 to 2400 nm. The two spectrometers were set to acquire five repeats con-
secutively during one acquisition of 2 s for a single measurement location. The fiber optic probe
was a 1-to-4 fan-out bundle with equidistant source-detector separations of 0.63 mm (BF46LS01,
600-μm core, Low OH, Thorlabs, Munich, Germany).

2.2 Data Preprocessing
Each EWDRS data entry was obtained by averaging over the five repeats followed by intensity
calibration and splicing the two spectra together using spline interpolation. The wavelength bin
widths were ∼0.76 nm in the 355- to 1100-nm range and 1.6 nm in the 1100- to 1850-nm range
per channel. All measurements were calibrated against a reflectance standard (FWS-99-01c,
Avian Technologies LLC, New London, United States) and corrected for dark counts pre and

post each experiment using the standard method Sraw−Sbkgd
Sref−Sbkgd

. Savitzky–Golay (SG) data smoothing

filter was applied with a frame size of 5 and polynomial order of 2 for denoising.37,38 The
EWDRS dataset, containing numerical features and categorical labels, was structured into an
m × nmatrix, wherem represented the number of DRS data entries and n represented the number
of features. There were 5215 data entries and 1531 features subjected to further analysis. The data
entries were treated as mutually independent entities.

2.3 Classification Models
Classification models were trained via the one-versus-rest (OVR) binary approaches. The pos-
itive class (one) was defined as bone cement, and the negative class (rest) was collectively
defined for bone marrow, cartilage, cortical bone, and trabecular bone in the first scenario
(boneCement versus rest). In the second scenario, the positive class was cortical bone, and
the rest included bone marrow, cartilage, muscle, and trabecular bone (cortBone versus rest).
Six models were included to compute balanced accuracy using all features:

• logistic regression (LogReg) representing a baseline linear regression model used for
classification,

• LDA representing a baseline linear classification model,
• random forest (RF) representing an ensemble bagging classifier,
• k-nearest neighbors (KNNs) representing an instance-based classifier,
• Gaussian Naïve Bayes (GNB) representing a probabilistic classifier, and
• support vector machine (SVM) representing a maximum margin classifier.

The balanced accuracy is the arithmetic mean of sensitivity and specificity in binary
classification

Table 1 Total number of tissue specimens and DRS measurements used in the analysis.

Bone marrow Cartilage Cortical bone Muscle Trabecular bone Bone cement

Number of specimens 43 55 48 31 47 3

Number of data entries 1000 1000 1000 1000 1000 215
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where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the false
negative. TP represented the instances of bone cement and cortical bone being correctly identified
in the two scenarios, respectively. Default parameters were used. The classification model gener-
ating the highest balanced accuracy was chosen as the classifier to evaluate the quality of FS.
Balanced accuracy was treated as a metric for quality check, where features of lower scores were
discarded. Globally, the percentage of holdout dataset was stratified 20%. Global cross-validation
(CV) was stratified 10-fold with 10 repeats. Stratified sampling was used to preserve the same class
distribution of features in the training, validation, and holdout datasets as the complete dataset. The
six models were trained, validated, and tested using the complete EWDRS dataset.

2.4 Feature Selection
FS techniques were implemented via the OVR binary approach to achieve the highest discrimi-
native power. An overview of FS process is shown in Fig. 2. Algorithms involving data
transformation were incorporated with optimization techniques to permit FS using the original
features. The final selection subset was pre-defined to contain 10 features. The following sub-
sections described the implementation of PCA, LDA, and backward interval PLS (biPLS) into
independent FS frameworks. Detailed explanations of the algorithms can be found in review
articles.39–42 An ensemble framework of FS43 was subsequently formulated for comparison.

2.4.1 Feature selection framework – principal component analysis

PCA is an unsupervised technique that projects the original data based on maximized variance
onto a lower dimension via an orthogonal linear transformation. The resulted principal compo-
nents (PCs) from PCA transformation, ranked by descending variance, might not bear discrimi-
native power in the same descending order for the classification problem.44 Simulated annealing
(SA),45 a stochastic optimization algorithm, was therefore implemented to search for a set of PCs
that approximated the global optimum of a user-defined cost function. LDAwas selected as the
cost function due to its simplicity. Regularization parameters in SAwere tuned by trial and error
for the data domain. To minimize computational cost, the first 30 out of 1530 PCs were initially
selected followed by SA optimization with 600 iterations to further select 10 PCs that jointly
produced the highest LDA classification accuracy. SA optimization would be inactivated if a
100% accuracy score was generated during the first iteration. The next step involved selecting
peaks from the 10 eigenvectors plotted against features based on user-defined inclusion criteria,
which comprised of removal of duplicates, features within 20 nm horizontally and below 20%
normalized intensity vertically. The final 10 features were determined by ranking and removing
collinearity that was identifying the most relevant feature to the class label by ranked ANOVA

Fig. 2 Overview of a typical FS workflow.
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F-values and sequentially discarding the most correlated feature to the most relevant feature
based on Pearson correlation coefficients. The flowchart of PCA FS framework can be found
in Fig. S1(a) in the Supplementary Material.

2.4.2 Feature selection framework – linear discriminant analysis

LDA is a supervised technique that searches for a linear combination of features based on maxi-
mized class separation. To implement LDA in an FS workflow, a moving-window approach was
utilized by setting a series of feature intervals of custom lengths, including 25, 50, 75, 100, 150,
200, and 300 nm. The initial feature subspace was constructed by selecting the top feature within
the interval based on the ranked LDA coefficients of this interval. The computation process was
iterated over all interval sizes and across the full feature domain. Duplicates and features within
30 nm of each other were discarded. The top 75% of initial feature subspace was chosen similarly
by sequential removal of ranked feature collinearity, where the most relevant feature to the class
label was determined by ranking LDA coefficients of the initial feature subspace. The final fea-
ture subset was calculated by performing SA optimization to search for the 10 features collec-
tively producing the highest LDA classification accuracy. SA optimization was always activated
with 2000 iterations to reach convergence. The flowchart of LDA FS framework can be found in
Fig. S1(b) in the Supplementary Material.

2.4.3 Feature selection framework – backward interval partial least squares

biPLS is one variation of backward variable elimination PLS methods for FS. The basis is to
compare the PLS root mean square error of CV (RMSECV) of the N-1 intervals with the baseline
RMSECV and eliminate the feature interval whose removal yields the lowest RMSECV in a
recursive way.46 The baseline RMSECV was calculated using all features. Optimization of
PLS components was performed for each PLS regression with 30 total components to minimize
computation. RMSECV calculation was iterated over the number of intervals, the size of inter-
vals, and the different CV shuffles of the training dataset across the full feature domain. The
custom sizes of feature intervals included 20, 40, 60, 70, 80, and 95 nm. Five different CV shuf-
fles of the training dataset were generated randomly and kept consistent. The retained feature
intervals from each iteration received one vote. The features with the highest votes were deemed
important. The final feature set was determined by searching the top 10 least collinear features.
The most relevant feature to the class label was calculated by ranked PLS-variable importance in
prediction scores.47 The flowchart of biPLS FS framework can be found in Fig. S2 in the
Supplementary Material.

2.4.4 Feature selection framework – ensemble

Ensemble FS (EFS) is a learning framework that combines different FS algorithms to achieve
improved outcomes by avoiding bias, merging advantages, and compensating disadvantages of
individual FS methods. The EFS framework incorporated three univariate filtering methods,
which were minimum redundancy – maximum relevance (mRMR)48 that measures the most
correlation with a class; mutual information (MI)49 that measures the amount of information
gain of one variable (feature) given the other known variable (class label); and ReliefF50,51 that
measures conditional dependencies between the k-nearest neighbors (KNNs) of one feature in an
instance-based manner. Selected features from the union of outputs by mRMR, MI, and ReliefF
were input into Boruta-RF,52,53 which is a wrapper method around RF that utilizes shadow fea-
tures to compute feature importance. The final feature subset could be determined by (1) selecting
the top 10 features from Boruta-RF rank based on the ranked ANOVA F-values, resulting in a
narrow spectral band (ensemble SB) or (2) selecting the top 10 least collinear features out of the
Boruta-RF rank, which was computed via the same collinearity removal process in the PCA FS
framework (ensemble LC). SHAP,54–59 one of the state of the art tools in ML explainability, was
performed to explain and quantify individual contributions of selected features to model predic-
tion base on cooperative game theory. The SHAP value was proposed by Lundberg and Lee as a
unified measure to represent additive feature importance, which was the average outcomes of
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marginal contributions from individual features over all possible feature permutations.36 The
SHAP algorithm in the EFS framework was based on ensembles of trees. There were two
optional optimization steps, including partition of the training dataset and aggregation of the
final selection. Partition involved segmenting the training dataset into multiple packets vertically
by features or horizontally by samples, or both,60 and aggregation involved searching features
from all vertical partitions to form a final subset that satisfied user-defined criteria. In the EFS
framework, vertical partition by features was adopted to divide the training dataset into three
spectral ranges that were approximately the VIS range of 355 to 700 nm, the NIR range of
700 to 1000 nm, and the SWIR range of 1000 to 1850 nm. Horizontal partition was indirectly
performed by iterating over different compositions of CV. Aggregation was achieved by incre-
mentally adjoining the VIS, NIR, and SWIR ranges, resulting in the VIS range of 355 to 700 nm,
the VIS/NIR range of 355 to 1000, and the VIS/NIR/SWIR range of 355 to 1850 nm. The flow-
chart of EFS framework is shown in Fig. 3.

3 Results
The classification models were benchmarked on the complete dataset as a reference of the
achievable maximal accuracy, followed by performance comparison of the top 1 and 10 wave-
length features selected by the four FS frameworks. Further investigations examined FS in differ-
ent spectral ranges and the tradeoff between the number of selected features versus model
accuracy. Model explainability was explored to understand individual feature contributions to
classification prediction.

3.1 Classification Models
The six classification models were trained with CV on the train/validation and tested on the
holdout datasets containing all features [Table 2]. Two decimal places were retained for balanced
accuracy. LDA was subsequently used to assess the quality of FS due to outperformance.

Fig. 3 EFS framework. Optional steps are labeled with asterisks, including training dataset
partition, sequential removal of collinear features by ranking, and aggregation of results from
all partitions. Acronyms: mRMR for minimum redundancy – maximum relevance, MI for mutual
information, Boruta-RF for Boruta random forest, SHAP for SHapley Additive exPlanations, and
clf for classification.
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3.2 PCA, LDA, and biPLS Feature Selection Frameworks
The final 10 selected wavelength features from FS frameworks of PCA, LDA, and biPLS over-
laid on the EWDRS spectra for boneCement versus rest and cortBone versus rest are shown in
Fig. 4. Balanced accuracy scores are shown in Table 3 (top) with the most relevant features to
classification and the average computation time to execute one framework.

Table 2 Summary of the balanced accuracy scores on the holdout dataset generated by LogReg,
LDA, RF, KNNs, GNB, and SVM and the average computation time to train one model.

Classifier

Balanced accuracy (%)

Computation time (s)BoneCement versus rest CortBone versus rest

LogReg 100 95.68 ± 1.38 0.25

LDA 100 99.79 ± 0.33 1.4

RF 99.98 ± 0.05 97.70 ± 1.14 2.0

KNN 100 96.37 ± 1.32 0.21

GNB 99.98 ± 0.05 87.49 ± 1.75 0.12

SVM 100 95.48 ± 1.34 0.64

Fig. 4 The final 10 selected features from FS frameworks of PCA (top), LDA (middle), and biPLS
(bottom) on the EWDRS spectra for boneCement versus rest (left) and cortBone versus rest (right).
Standard deviations are shown in shaded error bands. The arrows highlight spectra of
different class labels in subfigures for each scenario. Acronyms: boneCement for bone cement,
boneMarrow for bone marrow, cortBone for cortical bone, traBone for trabecular bone, PCA for
principal component analysis, LDA for linear discriminant analysis, and biPLS for backward
interval partial least squares.
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3.3 Ensemble Framework of Feature Selection
The final 10 wavelength features overlaid on the EWDRS spectra in the VIS, VIS/NIR, and
VIS/NIR/SWIR ranges are shown in Fig. 5 with balanced accuracy scores in Table 3 (top) and
(bottom). Optimal performance was discovered using ensemble LC and biPLS FS frameworks
based on the high averaged accuracy over the two holdout sets for the top 1 and 10 features. The
latter framework, however, required excessive computational effort. The final subset generated
by ensemble SB collectively yielded a narrow spectral band, making its deployment comparable
to using the top feature.

Figures 6(a)–6(c) demonstrated the top 10 least collinear features on the x-axis ranked by
contribution to classification for boneCement versus rest (top) and cortBone versus rest (bottom),
as well as the balanced accuracy calculated using sequential inclusion of the ranked wavelength
features. The accuracy scores reached the first plateau after ∼3 to 4 wavelength features.
Distribution of individual feature contributions on the prediction by SHAP analysis is shown
in Figs. 6(d) and 6(e), where the vertical axis illustrated the 10 features ranked in descending
order of contribution and the SHAP value on the horizontal axis explained the association
between the individual feature values and the level of their impact on the target prediction.
The SHAP plot visualized contributions from all instances determined by SHAP values on each
feature row, which included 4215 and 5000 data points for boneCement versus rest and cortBone
versus rest, respectively. The red and blue indicated high and low feature values, which corre-
sponded to high and low DRS signal intensity, respectively. Positive and negative SHAP values
represented positive and negative contribution by the exact amount in log odds as additive feature
importance to the binary model output, respectively. The 1458- and 1209-nm features had the
strongest effect on the prediction of positive classes in the two scenarios. For boneCement versus

Fig. 5 The final 10 selected wavelength features from ensemble SB as spectral band (a,c) and
ensemble LC as the least collinear features (b,d) for boneCement versus rest (a,b) and cortBone
versus rest (c,d) in the VIS (top), VIS/NIR (middle), and VIS/NIR/SWIR (bottom) spectral ranges,
respectively, on the EWDRS spectra. Standard deviations are shown in shaded error bands.
Acronyms: boneCement for bone cement, boneMarrow for bone marrow, cortBone for cortical
bone, and traBone for trabecular bone.

Li et al.: Frameworks of wavelength selection in diffuse reflectance spectroscopy. . .

Journal of Biomedical Optics 121207-10 December 2023 • Vol. 28(12)



rest, the model prediction was more likely to be bone cement when the DRS signal intensity
increased for all the 10 wavelength features. For cortBone versus rest, a positive correlation
was illustrated at wavelength features 1209 and 900 nm whilst wavelengths 1629 and 1850 nm
displayed an inverse correlation with DRS signal intensity.

4 Discussion
The EWDRS dataset, created by measuring DRS in ovine specimens of tissue types commonly
encountered in orthopedics-related surgery, was explored to achieve the primary aims. In this
study, we implemented PCA, LDA, and PLS into discovery-orientated FS frameworks and con-
structed an EFS framework for comparison to understand domain knowledge and determine an
optimal subset of wavelengths with high discriminative power for the positive class. The feature
inclusion criterion of 20- or 30-nm separation enforced selection of unique features by matching
the full width at half maximum (FWHM) of an average light-emitting diode (LED), which was
further refined by sequential ranking and removal of high correlation. The moving-window
approach also alleviated the effect of multicollinearity by separating wavelength features using
interval partitioning and manual deletions of adjacent features. By applying multicollinearity
reduction, the final selected wavelengths were sufficiently distinguishable by LED source(s)
of certain limited bandwidths. On the other hand, multicollinearity offers the advantage of select-
ing multiple different feature subsets with similar classification outcomes, enabling flexibility in

Fig. 6 Balanced accuracy computed by LDA with CV plotted against sequential inclusion of
the ranked least collinear wavelength features for boneCement versus rest (top x -axis) and
cortBone versus rest (bottom x -axis) in panels (a) VIS, (b) VIS/NIR, and (c) VIS/NIR/SWIR ranges.
The underscored features indicated the two wavelengths approaching the first plateau. Distribution
of individual feature contributions on the prediction by SHAP analysis is shown for (d) boneCement
versus rest and (e) cortBone versus rest. The 10 features were ranked on the vertical axis in
descending order of their contributions to prediction. The horizontal axis illustrates the impact
level of individual features of high or low value related to positive or negative prediction. Acronyms:
LDA for linear discriminant analysis, CV for cross-validation, and SHAP for SHapley Additive
exPlanations.

Li et al.: Frameworks of wavelength selection in diffuse reflectance spectroscopy. . .

Journal of Biomedical Optics 121207-11 December 2023 • Vol. 28(12)



hardware design. This behavior was demonstrated by clusters of the selected features from all
four FS frameworks. The disadvantage is also evident that it deteriorates model interpretability
especially in models involving data transformation due to lost physical representations and less
inferential model coefficients. The wavelengths of light sources selected by transformed coef-
ficients became less reliable in practice. The EFS framework comprising of three univariate filters
and one tree model was created to resolve the issue. The 10 wavelength features by the EFS
framework offered comparable balanced accuracy to using all features, which could be reduced
to 3 to 4 wavelength features. An optimized FS framework for subsequent deployment should be
implemented with feature engineering to merge collinear features into one new feature, therefore
decreasing computational burden and redundant outcomes. The tradeoff between the number of
wavelength features and classification accuracy should also be considered to optimize instrument
complexity and cost. Other conventional methods, such as first and second derivatives, could also
provide decisive information for FS in spectroscopy.

The four FS frameworks considered correlations among the final 10 selected wavelengths. In
general, prominent absorption peaks of biomarkers were identified, such as collagen, lipid, and
water in the SWIR range as well as different forms of hemoglobin (Hb) in the VIS/NIR range. For
both scenarios, absorption regions for lipids at 1210 nm, collagen at 1200, 1500, and 1725 nm,
and water at 1440 nm were recognized with some contribution from Hb at 576 nm.61 The lack of
tissue chromophores in the non-biological specimens contributed to the selection of wavelength
features in the spectral region with stronger absorption from biological specimens by amplifying
the difference in signal intensity. Furthermore, FS frameworks implementing PCA, LDA, and
biPLS systematically selected one absorption peak of lipid as the most relevant features in
cortBone versus rest, including 1211, 1188, and 1207 nm of <25 nm apart and statistically insig-
nificant difference due to limited resolution of the DRS system [Table 3(top)]. The fine resolution
calculated by FS frameworks might not be precisely characterized by hardware because of the
limited FWHM of an average LED. Larger FWHMwidths could be preferred over laser diodes of
narrower bandwidths. By encompassing more wavelengths, such as the band in ensemble SB
covering 1200 to 1216 nm [Fig. 5(c)], the balanced accuracy was improved from 88% to 94%.
For boneCement versus rest, PCA and LDA FS frameworks both selected wavelengths at around
1460 nm corresponding to one absorption peak of water. The biPLS FS framework chose the top
wavelength in the farther SWIR region at 1800 nm with no selection around 1460 in the final
subset. Balanced accuracy was nevertheless comparable. Such observations demonstrated multi-
collinearity and implied drawbacks of utilizing core algorithms based on data transformation.
The initial pool of all-relevant features generated by the algorithms might not translate to
high classification scores in the original data space even with optimization techniques. Second,
collinear features were removed from the pool by discarding adjacent wavelengths of similar
discriminative strength, leading to a final subset that contained relevant features of minimal
predictive power. Wavelength selection in Fig. 4 included relevant features corresponding to
non-specific absorbers in biological tissues presumably due to the difference in signal intensity
in the original data space. Features selected by the LDA FS framework covered the 800 to
1000 nm range, over which prominent tissue chromophores demonstrate broader absorption
spectra. Moreover, LDA was used in both classification and FS, contributing to the highest
balanced accuracy for the 10-wavelength classification with improved model performance in
Table 3 (top). The final subset of wavelength features tended to fall in the SWIR region of
1100 to 1800 nm, especially for boneCement versus rest, with some selection from the VIS
region of 400 to 600 nm [Figs. 4 and 5], suggesting that the higher level of signal intensity
in addition to the absorption signatures contributed greater predictive power than absorption
features alone. During orthopedic surgery with less active bleeding, this behavior demonstrated
utility of the SWIR region as the illumination wavelengths over which Hb exhibited minimal
absorption and offered advantages to reducing the effect of blood contamination on DRS
measurements.

In a similar vein, the final subset from ensemble LC included relevant features with minimal
predictive power, rendering the order of predictive features within the rank crucial. In Figs. 6(a)–
6(c), the balanced accuracy curves reached the first plateau with inclusion of the first 3 to 4
features though the increase was statistically insignificant in Fig. 6(c). For cortBone versus rest,
the highest balanced accuracy was reached in the VIS/NIR/SWIR range. Increase of the
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classification score was observed as more features in the NIR and SWIR ranges were added
stepwise for evaluation. A comparable pattern was shown for boneCement versus rest with a
final 100% balanced accuracy individually achieved in the three spectral ranges. The least col-
linear features however formed clusters at certain wavelengths in the VIS and VIS/NIR ranges for
both scenarios [Figs. 5(b) and 5(d)], suggesting that these spectral ranges contained fewer distinct
features of high discriminative power. The EFS framework likewise selected spectral bands at
maximized signal intensity inside the VIS (top) and VIS/NIR (middle) ranges for both scenarios
in Figs. 5(a) and 5(c). Contribution of Hb absorption at around 550 nm was only deemed impor-
tant with multicollinearity removal as seen in the VIS and VIS/NIR ranges by comparing ensem-
ble LC with ensemble SB. In the literature, Gunaratne et al.30 concluded that wavelengths with
the most discriminative power largely existed in the spectral range of 370 to 470 nm and 800 to
1010 nm where Hb, water, and lipid could be major contributors to classification, corresponding
to the findings in our study.

Limitations of this work stemmed from dataset creation, which was designed for data mining
and measured in a static laboratory environment with two detection fibers measuring different
acquisition volumes. The exact results might not be generalizable to other situations, such as an
ongoing surgery or a different experimental setup generating new DRS datasets from other spe-
cies of different ages. Under such circumstances, rigorous data preprocessing and experimental
setup will be required to standardize and normalize across different datasets. New features or
class labels will also need to be engineered to address external environmental factors. It is never-
theless believed that the FS frameworks can be adapted to new scenarios of changed class labels,
given that assumptions of the algorithms are met. For future directions, wavelengths selected
from the EFS framework, including 1210 and 1460 nm, will be validated in ex vivo studies and
subsequently implemented in the optical probe as the light sources for further translational
experiments in in vivo subjects. An ML system with continual learning will be established using
one-class classification to identify bone cement. The initial train/validation dataset of bone
cement in various conditions will be collected including ageing, blood contamination, and hydra-
tion at body temperature.

5 Conclusions
The present work described four different FS frameworks to select important wavelength features
for tissue differentiation in orthopedics. Three FS frameworks were constructed by implementing
conventionally used algorithms, including PCA, LDA, and PLS, while the other was formulated
via an ensemble approach. All frameworks generated comparable results and model perfor-
mance. The EFS framework produced more interpretable models with efficiency. The final subset
of 10 selected features contained wavelengths corresponding to prominent absorption peaks of
major tissue chromophores, such as Hb, water, lipid, and collagen at around 600, 1200, 1400, and
1500 nm, respectively, and wavelengths at maximized signal intensity difference. FS results set
the groundwork to choose adequate light source(s) in the optical device for bone cement removal
guidance in rTHA surgery. In the future, the frameworks will be adapted to various clinical appli-
cations to facilitate the determination of important wavelengths and biomarker sensitivity.

Disclosures
The authors declare no conflicts of interest.

Code, Data, and Materials Availability
The EWDRS dataset used for the analysis is available in a public Github repository or Zenodo
repository (DOI: 10.5281/zenodo.7554759) all licensed under CC-BY-NC-SA-4.0:

https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionDataset.git.

The code in.ipynb format used to generate the results, and figures are available in a public Github
repository or Zenodo repository (DOI: 10.5281/zenodo.7554778) all licensed under CC-BY-NC-
SA-4.0:

https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionCode.git.

Li et al.: Frameworks of wavelength selection in diffuse reflectance spectroscopy. . .

Journal of Biomedical Optics 121207-13 December 2023 • Vol. 28(12)

10.5281/zenodo.7554759
10.5281/zenodo.7554759
10.5281/zenodo.7554759
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionDataset.git
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionDataset.git
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionDataset.git
10.5281/zenodo.7554778
10.5281/zenodo.7554778
10.5281/zenodo.7554778
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionCode.git
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionCode.git
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionCode.git


Supplementary Material can be found in a public Github licensed under CC-BY-NC-SA-4.0:

https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionSuppl.git.

The authors intend to submit a complementary data descriptor article to scientific data sub-
sequently upon acceptance of this article.

Acknowledgments
This publication has emanated from research conducted with the financial support of Science
Foundation Ireland (SFI) primarily (Grant No. SFI/15/RP/2828) and secondarily by SFI, (Grant
No. 12/RC/2289-P2) co-funded under the European Regional Development Fund. For the purpose
of Open Access, the author has applied a CC BY public copyright licence to any author accepted
manuscript version arising from this submission. The authors would like to acknowledge
online data science communities, including Kaggle, Medium, Machine Learning Mastery, Nirpy
Research, and Towards Data Science for insights and tutorials.

References
1. R. Kagan et al., “Complications and pitfalls of direct anterior approach total hip arthroplasty,” Ann. Jt. 3(5),

1–7 (2018).
2. S. M. Heo et al., “Complications to 6 months following total hip or knee arthroplasty: observations from

an Australian clinical outcomes registry,” BMC Musculoskelet. Disord. 21(602), 1–11 (2020).
3. A. M. Schwartz et al., “Projections and epidemiology of revision hip and knee arthroplasty in the United

States to 2030,” J. Arthroplast. 35(6), S79–S85 (2020).
4. C. Fisher et al., “Perspective on the integration of optical sensing into orthopedic surgical devices,”

J. Biomed. Opt. 27(1), 010601 (2022).
5. C. L. Li et al., “Wavelength selection using diffuse reflectance spectra and machine learning algorithms for

tissue differentiation in orthopedic surgery,” in Biophotonics Congr.: Biomed. Opt. 2022 (Transl. Microsc.,
OCT, OTS, BRAIN), p. TS4B.6 (2022).

6. K. Grygoryev et al., “Cranial perforation using an optically-enhanced surgical drill,” IEEE Trans Biomed Eng
67(12), 3474–3482 (2020).

7. M. Duperron et al., “Diffuse reflectance spectroscopy-enhanced drill for bone boundary detection,” Biomed.
Opt. Express 10(2), 961 (2019).

8. K. Govaers et al., “Endoscopy for cement removal in revision arthroplasty of the hip,” J. Bone Jt. Surg.
88-A(Suppl. 4), 101–110 (2006).

9. E. M. Slotkin, P. D. Patel, and J. C. Suarez, “Accuracy of fluoroscopic guided acetabular component position-
ing during direct anterior total hip arthroplasty,” J. Arthroplast. 30(9, Suppl. 1), 102–106 (2015).

10. S. Sdao et al., “The role of ultrasonography in the assessment of peri-prosthetic hip complications,”
J. Ultrasound 18(3), 245–250 (2015).

11. J. M. Laffosse, “Removal of well-fixed fixed femoral stems,” Orthop. Traumatol. Surg. Res. 102(1),
S177–S187 (2016).

12. B. A. Masri, P. A. Mitchell, and C. P. Duncan, “Removal of solidly fixed implants during revision hip and
knee arthroplasty,” J. Am. Acad. Orthop. Surg. 13(1), 18–27 (2005).

13. M. Tovar-Bazaga et al., “Surgical technique of a cement-on-cement removal system for hip and knee arthro-
plasty revision surgery,” Arthroplast. Today 9, 112–117 (2021).

14. P. H. J. Cnudde et al., “Cement-in-cement revision of the femoral stem,” Bone Jt. J. 99-B(4), 27–32
(2017).

15. A. Liddle et al., “Ultrasonic cement removal in cement-in-cement revision total hip arthroplasty: what is
the effect on the final cement-in-cement bond?” Bone Jt. Res. 8(6), 246–252 (2019).

16. R. Vaishya, M. Chauhan, and A. Vaish, “Bone cement,” J. Clin. Orthop. Trauma 4(4), 157–163 (2013).
17. A. Engelhardt et al., “Comparing classification methods for diffuse reflectance spectra to improve tissue

specific laser surgery,” BMC Med. Res. Methodol. 14(1), 1–15 (2014).
18. F. Fanjul-Vélez, S. Pampín-Suárez, and J. L. Arce-Diego, “Application of classification algorithms to diffuse

reflectance spectroscopy measurements for ex vivo characterization of biological tissues,” Entropy 22(7), 736
(2020).

19. U. Dahlstrand et al., “Extended-wavelength diffuse reflectance spectroscopy with a machine-learning method
for in vivo tissue classification,” PLoS One 14(10), e0223682 (2019).

20. M. H. Nguyen et al., “Machine learning to extract physiological parameters from multispectral diffuse
reflectance spectroscopy,” J. Biomed. Opt. 26(5), 052912 (2021).

21. J. Y. Chan et al., “Mitigating the multicollinearity problem and its machine learning approach: a review,”
Mathematics 10(8), 1283 (2022).

22. D. D. Silalahi et al., “Robust wavelength selection using filter-wrapper method and input scaling on near
infrared spectral data,” Sensors 20(17), 5001 (2020).

Li et al.: Frameworks of wavelength selection in diffuse reflectance spectroscopy. . .

Journal of Biomedical Optics 121207-14 December 2023 • Vol. 28(12)

https://doi.org/10.1117/1.JBO.28.12.121207.s01
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionSuppl.git
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionSuppl.git
https://github.com/Biophotonics-Tyndall/PUB-FeatureSelectionSuppl.git
https://doi.org/10.21037/aoj.2018.04.05
https://doi.org/10.1186/s12891-020-03612-8
https://doi.org/10.1016/j.arth.2020.02.030
https://doi.org/10.1117/1.JBO.27.1.010601
https://doi.org/10.1364/translational.2022.ts4b.6
https://doi.org/10.1364/translational.2022.ts4b.6
https://doi.org/10.1109/TBME.2020.2987952
https://doi.org/10.1364/BOE.10.000961
https://doi.org/10.1364/BOE.10.000961
https://doi.org/10.2106/JBJS.F.00699
https://doi.org/10.1016/j.arth.2015.03.046
https://doi.org/10.1007/s40477-014-0107-4
https://doi.org/10.1016/j.otsr.2015.06.029
https://doi.org/10.5435/00124635-200501000-00004
https://doi.org/10.1016/j.artd.2021.05.008
https://doi.org/10.1302/0301-620X.99B4.BJJ-2016-1222.R1
https://doi.org/10.1302/2046-3758.86.BJR-2018-0313.R1
https://doi.org/10.1016/j.jcot.2013.11.005
https://doi.org/10.1186/1471-2288-14-91
https://doi.org/10.3390/e22070736
https://doi.org/10.1371/journal.pone.0223682
https://doi.org/10.1117/1.JBO.26.5.052912
https://doi.org/10.3390/math10081283
https://doi.org/10.3390/s20175001


23. H. Kaneko et al., “Transfer learning and wavelength selection method in NIR spectroscopy to predict glucose
and lactate concentrations in culturemedia using VIP-Boruta,” Anal. Sci. Adv. 2(9–10), 470–479 (2021).

24. E. J. M. Baltussen et al., “Optimizing algorithm development for tissue classification in colorectal cancer
based on diffuse reflectance spectra,” Biomed. Opt. Express 10(12), 6096–6113 (2019).

25. H. Jiang, W. Xu, and Q. Chen, “Comparison of algorithms for wavelength variables selection from near-
infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations,”
Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 214(5), 366–371 (2019).

26. B. Remeseiro and V. Bolon-canedo, “A review of feature selection methods in medical applications,”
Comput. Biol. Med. 112, 103375 (2019).
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