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ABSTRACT. Significance: The shortwave infrared (SWIR, ∼900 to 2000 nm) holds promise for
label-free measurements of water and lipid content in thick tissue, owed to the
chromophore-specific absorption features and low scattering in this range. In vivo
water and lipid estimations have potential applications including the monitoring of
hydration, volume status, edema, body composition, weight loss, and cancer. To
the best of our knowledge, there are currently no point-of-care or wearable devices
available that exploit the SWIR wavelength range, limiting clinical and at-home
translation of this technology.

Aim: To design and fabricate a diffuse optical wearable SWIR probe for water and
lipid quantification in tissue.

Approach: Simulations were first performed to confirm the theoretical advantage of
SWIR wavelengths over near infrared (NIR). The probe was then fabricated,
consisting of light emitting diodes at three wavelengths (980, 1200, 1300 nm) and
four source-detector (S-D) separations (7, 10, 13, 16 mm). In vitro validation was
then performed on emulsion phantoms containing varying concentrations of water,
lipid, and deuterium oxide (D2O). A deep neural network was developed as the
inverse model for quantity estimation.

Results: Simulations indicated that SWIR wavelengths could reduce theoretical
water and lipid extraction errors from ∼6% to ∼1% when compared to NIR wave-
lengths. The SWIR probe had good signal-to-noise ratio (>32 dB up to 10 mm S-D)
and low drift (<1.1% up to 10 mm S-D). Quantification error in emulsion phantoms
was 2.1� 1.1% for water and −1.2� 1.5% for lipid. Water estimation during a D2O
dilution experiment had an error of 3.1� 3.7%.

Conclusions: This diffuse optical SWIR probe was able to quantify water and lipid
contents in vitro with good accuracy, opening the door to human investigations.
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1 Introduction
The near infrared (NIR, ∼700 to 1000 nm) wavelength band has dominated diffuse optical
imaging and spectroscopy in tissue for decades. While often utilized to quantify hemoglobin,
NIR technologies have also been used to measure water and lipid in vivo, ex vivo, and in vitro,
typically using wavelengths in the 900 to 1000 nm range.1–7 The accurate quantification of tissue
water and lipid is of interest, as this capability could enable a wide range of clinical, point-of-
care, and consumer applications including volume status monitoring for end-stage kidney disease
and heart failure patients, tissue hydration monitoring for athletes, body composition assessment
during weight loss, cancer treatment monitoring, and others.8 With respect to clinical applica-
tions, kidney disease patients undergoing dialysis treatment experience fluid accumulation and
require fluid removal, making frequent water volume assessment a desirable capability. Heart
failure patients experience similar fluid accumulation, and water and lipid content have been
shown to have prognostic value for monitoring breast cancer treatment response during neoad-
juvant chemotherapy.1,2 With respect to consumer applications, serious and casual athletes alike
are continuously searching for methods of performance enhancement, with hydration optimiza-
tion and continuous body composition analysis offering obvious benefits in this field.

The shortwave infrared (SWIR, ∼900 to 2000 nm) wavelength band is currently being
explored as an alternative to the NIR due in part to the recent improvements in the availability
and performance characteristics of SWIR-active detectors. Advantages of the SWIR wavelength
band include relatively low tissue scattering,9 which has been utilized for deep tissue fluores-
cence microscopy with applications including the imaging of cancer biomarkers, vascular
disorders, liver disease, and bone structure.10–13 Water and lipid also gain dominance as absorb-
ing chromophores in the SWIR, which suggests that their estimation in vivo with a wearable
device would benefit from exploiting this optical window. It should be noted that the SWIR
window of particular interest in this work (∼900 to 1300 nm) is sometimes referred to as the
second NIR window, and that additional SWIR windows (or NIR windows, depending on the
arbitrary naming convention being used) at longer wavelengths also exist, generally located
between sequential water absorption peaks. However, references to the “NIR” region in this
study refer to the traditional first NIR window. Prior work employing SWIR spectroscopy for
water and lipid quantification includes the use of frequency-domain (FD) measurements for
absolute absorption and scattering coefficient estimation, as well as hyperspectral continuous
wave (CW) measurements employing spectral constraints.7,14 Our prior work has demonstrated
water and lipid quantification using a technique called hyperspectral SWIR spatial FD imaging.
While these prior investigations show promise, clinical and at-home translation in this space
remains limited in part due to the complexity of current measurement techniques, which may
require bulky spectrometers, custom electronics, and expensive scientific grade detectors.15,16

In this work, we present a simple light emitting diode (LED)-based wearable multi-distance
CW SWIR probe for the quantification of water and lipid content in tissue. We also describe the
implementation of a deep neural network (DNN) for the mapping of diffuse reflectance mea-
surements to water and lipid estimates. While DNN inverse models are becoming increasingly
common, they are still infrequently utilized in the diffuse optics field, especially with SWIR
technology. In the following sections, we first detail the design considerations, including a com-
parison of chromophore recovery performance between NIR and SWIR wavelengths in simu-
lation. We then describe the physical layout of the probe, its control system, and its performance
metrics. Finally, we validate its ability to quantify water and lipid in vitro through two different
optical phantom experiments involving water and lipid emulsions.

2 Comparison of SWIR and NIR in Simulation

2.1 Wavelength and Source-Detector Separation Selection for Simulation
Figure 1 shows representative absorption spectra of endogenous chromophores in tissue to
provide a visual comparison of the NIR and SWIR wavelength bands. Absorption spectra were
computed using published extinction spectra.17–19 Tissue concentrations of water, oxy-hemoglo-
bin (HbO2), and deoxy-hemoglobin (HHb) are average values reported for healthy breast tissue,
with lipid estimated at 40% by volume.20 As seen in this figure, water absorption overtakes that
of hemoglobin past ∼900 nm, whereas lipid exceeds hemoglobin absorption past ∼1100 nm for
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this tissue type. Water absorption becomes very high past 1400 nm, limiting imaging penetration
depth and signal levels. A SWIR window of 980 to 1300 nm (shaded region) in Fig. 1) was
chosen for the probe illumination based on these considerations. Discrete wavelengths at
980, 1200, and 1300 nm were then chosen based on LED availability. Water absorption is rel-
atively high at all three of these wavelengths, whereas lipid absorption has a peak near 1200 nm.
For the NIR, 900, 930, and 970 nm were chosen based on spectral features commonly exploited
and LED availability. Four source-detector (S-D) separations (7, 10, 13, and 16 mm) were
included in the simulations. In total, this resulted in 12 unique wavelength/separation pairs for
the SWIR and NIR.

2.2 Simulation Workflow
Simulations were performed using both Matlab and Python, and the workflow is described here
and summarized in Fig. 2(a). For a single simulation, water, lipid, and scattering properties were
randomized for the simulated “sample.” For each simulation performed, water and lipid concen-
trations were randomly selected from uniform distributions between 0% and 100% and always
summed to 100% (entire simulated sample comprised of just water and lipid). The percentage
refers to percent by volume. A power law [Eq. (1)] described the scattering relationship with
wavelength, with scattering amplitude (A) and slope (b) as the randomized properties

EQ-TARGET;temp:intralink-;e001;117;308μ 0
sðλÞ ¼ A �

�
λ

980 nm

�
−b
: (1)

Possible amplitude values were defined as a uniform distribution from 0.2 to 10 mm−1

(referenced to 980 nm). Scattering slope values were defined as a normal distribution with
μ ¼ 1.29, σ ¼ 0.52, which are typical slope values for soft tissue.21 Next, the absorption coef-
ficient (μa) and reduced scattering coefficient (μ 0

s) were computed for each of the three SWIR and
NIR wavelengths. Beer’s Law was used to compute μa (using the same extinction spectra from
Sec. 2.1), and Eq. (1) was used to compute μ 0

s. A pre-generated look-up table (LUT) of Monte
Carlo-derived diffuse reflectance (Rd) values then mapped optical property pairs to Rd values for
each of the 12 unique wavelength/separation pairs, for both the SWIR and NIR groups (Monte
Carlo simulations described in more detail in the following section). Zero-mean Gaussian noise
was then added to the Rd values, with σ ¼ 5%. These noise-added Rd values were then input to
an inverse model to recover water and lipid estimates. A fully connected DNN was used as the
inverse model. This process was repeated 25,000 times, resulting in 25,000 sets of recovered
water and lipid values for both the SWIR and NIR groups. These recovered values were
compared to the ground truth values to compute the mean and standard deviation of extraction
errors.

Fig. 1 Absorption of endogenous chromophores in healthy breast tissue from 600 to 1700 nm
(for water and lipid) and 600 to 1300 nm (for HbO2 and HHb). Tissue concentrations for this
example are as follows: water = 51.5%, lipid = 40%, HbO2 ¼ 11.3 μM, HHb ¼ 5.3 μM. The shaded
region (980 to 1300 nm) refers to desired SWIR wavelength region for our probe design.
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2.3 Forward and Inverse Models: Monte Carlo and DNN
White Monte Carlo simulations were run and the results were used to map optical property pairs
to surface diffuse reflectance. Simulations were run in Matlab using Monte Carlo eXtreme.22 The
sample geometry was defined as a slab with dimensions of 6 cm × 6 cm × 10 cm, approximating
a semi-infinite medium. Optical properties were homogenous, with μa ¼ 0 mm−1 and μ 0

s ranging
from 0.2 to 10 mm−1. Detectors were placed 7, 10, 13, and 16 mm from the source, and a steady-
state illumination source fiber was used. Collected photons for each μ 0

s value were then scaled for
a range of absorption values using the Beer-Lambert law, with μa ranging from 0.001 to
0.2 mm−1. Anisotropy factor g and index of refraction n were set to 0.7 and 1.435, respectively,
which are values for lipid-water emulsions adapted from Flock et al.23 and Aernouts et al.24 After
the Monte Carlo simulations were completed, the μa, μ 0

s, and resultant Rd values at each S-D
separation were saved in a LUT.

The DNN was implemented in Python using the Keras library. The architecture and training
parameters are summarized in Fig. 2(b) and are briefly described here. The DNN consists of an
input layer with 12 nodes (Rd for each wavelength/separation pair), 3 hidden layers, each with
20 nodes, and an output layer with 2 nodes (recovered water and lipid). The rectified linear unit
was selected as the activation function for hidden layer nodes, and a linear function was the
activation function for the output layer. The Adam optimizer was the training algorithm with
a learning rate = 0.001. The loss function (or error function) was the mean squared error
(MSE) of water and lipid. A trial-and-error approach was used to select the number of hidden
layers and nodes/layer, initially exploring 1 to 6 hidden layers and 10 to 100 nodes/layer. It was
found that adding more layers beyond 3 had diminishing returns in error minimization, and
likewise beyond 20 nodes/layer. However, this optimization was coarse, and other functional
architectures exist. The chosen activation function, training algorithm, learning rate, and loss
function are all commonly used for fully connected DNNs. For training data, 75,000 sets of
water, lipid, and Rd values (generated using the same Monte Carlo LUTs described previously)
were constructed in Matlab and imported into Python, using the same randomization process and
parameters described for the 25,000 test datasets in Sec. 2.2. These parameters are also reported
in Table S1 in the Supplementary Material. The Rd inputs were log-normalized prior to training.
The spectral constraints described in Sec. 2.2, namely (1) absorption limited to a linear sum of

Fig. 2 (a) Simulation flowchart for the comparison of SWIR and NIR wavelengths. (b) A table of
architecture and training parameters for the DNNs used in this study. (c) Loss (MSE) as a function
of epoch during training for both the SWIR and NIR DNNs. (d) All 25,000 recovered water values
plotted versus ground truth for SWIR and NIR wavelengths. (e) Same as (d), but for lipid. (f) Bar
plots of the mean and standard deviation of differences between recovered and ground truth
values for both SWIR and NIR.
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water and lipid contributions and (2) the wavelength dependence of scattering defined by a power
law, provided important constraints during training, which helped to reduce the solution space.
Two DNNs were trained, one for SWIR and one for NIR. Initially, automatic stopping was imple-
mented during training, stopping when the mean loss over the previous 200 epochs was no longer
decreasing. This occurred after ∼2000 epochs for both SWIR and NIR. To be cautious, the final
DNNs used for comparison were trained with 3000 epochs. All subsequent DNNs in this study
(after the SWIR versus NIR comparison), however, were trained with 2000 epochs.

2.4 Simulation Results
Figure 2(c) illustrates the first indication that SWIR outperforms NIR in water and lipid recovery
by showing the MSE during training of the two DNNs. The NIR MSE plateaued at around 10−4,
whereas the SWIR MSE dropped below 10−5, indicating that, even prior to noise addition, the
SWIR wavelengths were able to achieve a lower error in water and lipid extractions. Figures 2(d)
and 2(e) show plots of recovered water and recovered lipid versus their ground truths, respec-
tively, for the 25,000 noise-added test sets described in Sec. 2.2. It is evident that for both water
and lipid, the spread of recovered values more closely approaches the identity line for the SWIR
wavelengths. This is especially true for high water/low lipid samples, with more comparable
errors for near-100% lipid samples. Figure 2(f) quantifies this error, showing the mean and
standard deviation of the difference between recovered and true values for all 25,000 sets of
water and lipid values. For SWIR wavelengths, the errors for water and lipid recovery were
−0.1%� 1.3% and 0.2%� 1.3%, respectively. The NIR error was higher, with values for water
and lipid of 0.3%� 5.8% and −0.3%� 5.8%, respectively. These results suggest that the chosen
SWIR wavelengths outperform NIR wavelengths in water and lipid recovery.

3 Instrument Design and Characterization

3.1 Printed Circuit Board and Probe Housing
The system consists of two components: a probe and a microcontroller (FRDM-K64F). The
probe has one InGaAs PIN photodiode (G12180-30, Hamamatsu), four 980 nm LEDs
(MTE9730CP), four 1200 nm LEDs (MTSM0012-843-IR), and four 1300 nm LEDs
(MTSM0013-199-IR). All LEDs were purchased from Marktech. The photodiode has an active
area of ∼7 mm2 and is sensitive to the 900 to 1700 nm wavelength range. The quantum effi-
ciency at the illumination wavelengths is as follows: ∼63% at 980 nm, ∼83% at 1200 nm, ∼86%
at 1300 nm. LEDs were positioned at four different distances from the photodiode: 7, 10, 13, and
16 mm. These were the minimal distances achievable given the size of the optical elements.
A transimpedance amplifier (OPA3S32), with three integrated switchable gain levels (0.5, 1,
and 10 MΩ), was used to amplify and convert the photodiode current into voltage. This output
voltage is read by a 16-bit analog to digital converter embedded on the microcontroller. The
intensity of the twelve LEDs is controlled with the 12-bit digital to analog converter (DAC)
embedded on the microcontroller. The DAC output voltage is translated into current with an
operational amplifier (TLV272IS-13) and NPN bipolar junction transistor (TTC1949-GR,LF).
The microcontroller communicates with the probe through a high-definition multimedia interface
(HDMI) connection, and the user can interact with the system with a Python GUI (graphical user
interface). The sampling rate of the system was set to 1 Hz.

The SWIR probe is shown in Fig. 3(a) and the probe with control hardware is shown in
Fig. 3(b). Figure 3(c) shows the probe adhered to a forearm with Velcro. The probe was encased
in a custom 3D-printed plastic housing with overall dimensions of 7.1 cm × 3.1 cm × 1.4 cm.
Black silicone was used to isolate the optical elements. The silicone (Ecoflex-030, Smooth-On
Inc.) and black dye (Silc-Pig, Smooth-On Inc.) are skin-safe and were mixed together with a
curing agent, de-gassed in a vacuum chamber for 15 min, and poured directly onto the exposed
PCB (printed circuit board) surface.

3.2 Performance Characterization
Signal-to-noise ratio (SNR) and system drift were measured on a liquid optical phantom con-
taining 1% Intralipid solution in water. Both the water and lipid absorb light at SWIR wave-
lengths, and the lipid micelles are highly scattering, creating a diffusive medium. The optical
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properties of 1% Intralipid across the SWIR probe wavelengths, calculated using Beer’s Law and
Mie theory, range from 0.04 to 0.13 mm−1 for μa and 0.49 to 0.78 mm−1 for μ 0

s. The probe was
wrapped tightly in clear plastic wrap and fixed in a slightly submerged position within the liquid
phantom during measurement acquisition.

For the SNR measurement, the signal for each S-D pair was recorded for 1 min at the fixed
rate of 1 Hz. An initial background measurement was recorded with all of the LEDs off prior to
the acquisition. SNR was then computed as

EQ-TARGET;temp:intralink-;e002;114;41010 · log10

�
meanðVp − VdÞ
stdðVp − VdÞ

�
; (2)

where Vp − Vd is the difference between each sample voltage and the background dark voltage.
This dark subtraction was performed for all subsequent measurements. The SNRs for S-D
separations ≤10 mm are >30 dB (Table 1).

For the drift measurement, the signal for each S-D pair was recorded for 1 h. The voltage and
time data were then fit to a linear function to quantify the slope, which was normalized to the
initial voltage and multiplied by 100 to get units of % V/h. Drift values for S-D separations
≤10 mm were <1.1% V/h (Table 1).

4 In Vitro Validation

4.1 Water-in-Oil Emulsion Phantoms
Five water-in-oil emulsion phantoms were fabricated using soybean oil, water, and Triton X-100
as the emulsifier as described in Merritt et al.7 Lipid concentrations were 65% to 85%, in steps of
5%. High (≥65%) lipid concentrations were used to minimize scattering differences across phan-
toms, which occurs as a result of dependent scattering.24 The SWIR probe was wrapped in clear
plastic wrap and submerged in the emulsion phantoms. The probe optical elements were at least
1.5 cm from the phantom edge. Ten seconds of data were acquired at 1 Hz for each phantom
measurement.

The processing pipeline is depicted in Fig. 4. Measured sample and dark voltage measure-
ments were first gain-corrected, and all sample voltage measurements were dark subtracted.
Next, a forward model (Monte Carlo LUT) was used to map the known optical properties
(μa and μ 0

s) of the calibration phantom to a theoretical Rd value. As the photodiode operates
linearly with incident light power, the Rd value was divided by the calibration measurement
voltage to get a linear scaling factor, specific to each S-D pair. The corrected sample voltage
was then multiplied by this scaling factor to compute Rd for that S-D pair.

Fig. 3 (a) Sample-facing and side views of the encased SWIR probe, with optical elements
labeled. (b) The probe attached to its external control hardware (the microcontroller) via HDMI.
(c) An example of how the probe might be worn on the forearm of a human subject with a
Velcro strap.
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The 85% lipid phantom was used as the calibration phantom. Beer’s Law was used to
compute μa, and the empirical formula given by Aernouts et al.24 was used to compute μ 0

s.
This formula defines μ 0

s as a function of wavelength and lipid concentration for emulsions
up to 20% lipid concentration. However, the dependency on concentration nearly flattens at this
upper limit due to dependent scattering. Therefore, we approximated the scattering values for
85% lipid as being equal to those of 20% lipid. These optical properties ranged from 0.04 to

Table 1 Performance characteristics of SWIR probe.
SNR and drift values are shown for just the shortest
and longest S-D separations (7 and 16 mm).

Parameter Value (S-D separation)

Sampling rate 1 Hz

SNR

980 nm 36 dB (7 mm)

22 dB (16 mm)

1200 nm 42 dB (7 mm)

32 dB (16 mm)

1300 nm 41 dB (7 mm)

21 dB (16 mm)

Drift

980 nm ≤1% V/h (7 mm)

≤6% V/h (16 mm)

1200 nm ≤1% V/h (7 mm)

≤4% V/h (16 mm)

1300 nm ≤1% V/h (7 mm)

≤19% V/h (16 mm)

Fig. 4 Data processing flowchart for in vitro validation experiments.
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0.13 mm−1 for μa and 4.8 to 8.9 mm−1 for μ 0
s for the three measurement wavelengths. The DNN

architecture was nearly identical to the DNN described in Sec. 2, except the 16 mm S-D
separation measurements were removed due to low signal, resulting in 9 Rd inputs to the DNN.
The DNN was trained with 75,000 sets of 9 Rd values. Additional information related to the
training data is given in Table S1 in the Supplementary Material.

Figures 5(a) and 5(b) show Rd versus lipid concentration for the 7 and 10 mm separations.
Rd increased as lipid concentration increased and water concentration decreased. This is expected
at 980 and 1300 nm as water has high absorption compared to lipid. While lipid’s extinction
coefficient at 1200 nm is slightly higher than water’s, it is very close to an isosbestic point for the
two chromophores, and the LED illumination is broad (∼80 nm full-width at half maximum).
This likely explains why the 1200 nm data appears to behave similarly to the other wavelengths.
Also, Rd at 1200 nm is below that of both 980 and 1300 nm, which is consistent with the fact that
both water and lipid have relatively high absorption here. Figures 5(c) and 5(d) show the corre-
lations between recovered water and lipid, respectively, and their ground truth values. Both the
water and lipid estimates follow the identity line closely. Removing the calibration phantom from
the sample set, the mean ± standard deviation of the error (defined as error = estimated – true)
was 2.1%� 1.1% for water recovery and −1.2%� 1.5% for lipid recovery. These results indi-
cate that the SWIR probe is sensitive to variation in water and lipid content, and that, given
certain a priori information, it can accurately quantify water and lipid content in vitro.

4.2 Dilution of Oil-in-Water Emulsion with D2O
To further validate the SWIR probe’s sensitivity to water concentrations over a wide range,
measurements were taken on a solution of 1% Intralipid in pure water (H2O), which was serially
diluted with 1% Intralipid in deuterium oxide (D2O). D2O molecules consist of two H2 isotopes
instead ofH1, and their absorption is greatly reduced in the SWIR compared toH2Omolecules.25

Fig. 5 a) Rd versus lipid concentration for S-D separation = 7 mm. (b) Same as (a), but for S-D
separation = 10 mm. (c) Recovered water versus true water. The inset zooms in on the 25% water
data point, showing the length of the error bars. These error bars refer to the standard deviation
across the 10 consecutive time points that were acquired for each phantom. All four subfigures
have these error bars, but they are barely visible when zoomed out. (d) Same as (c), but for lipid
recovery.
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The initial 1% Intralipid solution was measured in a well embedded in a diffusive solid silicone
phantom. The well had a volume of 150 ml and was 2.5 cm deep. The SWIR probe was wrapped
in clear plastic wrap and fixed at the surface of the solution, slightly submerged. Data acquisition
was started and measurements were taken for 10 s at 1 Hz. Ten phantoms were measured, with
H2O concentrations ranging from 99% to 9% in steps of 10%. The concentration of scattering
lipid particles was preserved across all phantoms.

The 1% Intralipid in H2O solution was used as the calibration phantom for this experiment,
using the same known optical properties listed in Sec. 3.2. The Monte Carlo LUTs used to pro-
duce the DNN training data were generated with the index of refraction set to 1.33 to reflect the
low lipid concentration. The combinations of H2O and lipid were not constrained to sum to
100%, as the decreasing H2O concentration was replaced by D2O, not lipid. Furthermore,
we assumed that D2O absorption was collinear with H2O absorption but with 1/10th the
magnitude, an estimate based on the extinction spectra reported in Wang et al.25 This D2O

μa contribution was taken into account when generating the training data. Finally, the scattering
was fixed to be equal to that of 1% Intralipid. All 12 S-D pairs, spanning all four S-D separations,
were input to this experiment’s DNN. The DNN training data details are listed in Table S1 in
the Supplementary Material.

Figures 6(a) and 6(b) show Rd as a function of H2O concentration for the 7 and 10 mm S-D
separations respectively. The slope of Rd is steepest for 1300 nm, explained by the relatively high
absorption from H2O at this wavelength compared to the other two. We can assume that these
trends in Rd are strictly absorption-dependent since the scattering lipid particle concentration was
held constant. Figure 6(c) shows the recovered H2O concentration compared to the ground truth
concentration. The estimates are within 4% of the ground truth from 49% to 99% H2O and are
within 10% for all data points. Over the full range of concentrations, the mean ± standard
deviation of the error was 3.1%� 3.7%. This suggests that the SWIR probe has sensitivity to
water at all concentrations, although the accuracy of water estimation appears to degrade at
very low concentrations.

5 Discussion
We have presented here a CW wearable SWIR probe with LEDs that span 3 wavelengths
(980, 1200, 1300 nm) and 4 S-D separations (7, 10, 13, 16 mm), totaling 12 unique S-D pairs,
and validated its ability to quantify water and lipid content in vitro. To our knowledge, this is
the first wearable, LED-based SWIR probe capable of quantifying water and lipids.

There are a handful of prior reports showing that diffuse optical technologies are able to
quantify in vitro water and lipid concentrations. Merritt et al.7 used a combined laser-based
FD + broadband CW system with wavelengths from 650 to 1000 nm to estimate water and lipid
concentrations of the same type of emulsion phantoms measured here. They included 12 phan-
toms in their study with water and lipid concentrations ranging from 35% to 94% and 6% to
63%, respectively. They reported water estimates within 2% of ground truth across this range

Fig. 6 (a) Rd versus H2O concentration for S-D separation = 7 mm. (b) Same as (a), but for S-D
separation = 10 mm. (c) Recovered H2O versus ground truth compared to the identity line. For all
subfigures, error bars are presented as the standard deviation across the 10 consecutive time
points for each phantom measurement. Error bars are present but barely visible.
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and lipid estimates within 9%. This error manifested as a constant offset, and lipid recovery
was highly linear. Lam et al.5 used a broadband CW system from 900 to 1000 nm to measure 5
similar emulsion phantoms with water and lipid concentrations ranging from 20% to 60% and
40% to 80%, respectively. Errors ranged from 1.1% to 8.4%, with a mean error of
3.7%� 3.0%. Nachabe et al.14 achieved water and lipid errors of <5% over a wide variety
of emulsion phantom types using a broadband CW system from 900 to 1600 nm. In that study,
both custom and commercial (butter and margarine) phantoms were measured, including son-
ication of custom emulsion phantoms to vary scattering while holding water and lipid concen-
tration constant. This was the only other demonstration of CW diffuse optical measurements
beyond 1000 nm of such phantoms besides ours. Our emulsion phantom results, with errors of
2.1%� 1.1% for water recovery and −1.2%� 1.5% for lipid recovery, as well as 3.1%� 3.7%

in water recovery for the D2O dilution experiment, compare well to these previous studies.
Furthermore, the three other studies used broadband light sources allowing for the acquisition
of hyperspectral data, whereas our SWIR probe minimizes the instrument design using just
three wavelengths.

The use of D2O, which has been exploited previously for quantifying water absorption
properties in the SWIR region,26 offers a unique advantage over other emulsion phantom
experiments. Most prior studies have utilized emulsions in which both water and lipid
concentrations were changed simultaneously. This strategy is limited in one sense because the
changes in lipid micelle concentrations also change optical scattering, making it is difficult to
know whether observed water sensitivity is in part conflated with scattering sensitivity,
especially when lipid concentration is <20%. Pilvar et al.16 demonstrated this by showing how
a small increase from 1.5% to 2.5% intralipid in water had a negligible effect on μa, but a
significant effect on μ 0

s. This makes it challenging to predict how performance would translate
to applications in which only water concentration varies while scattering stays constant or
changes in an unknown direction, which may occur in tissue. The D2O experiment allowed
for the confirmation of good sensitivity to water concentration changes over nearly the entire
range of possible concentrations.

In this work, we utilized DNNs trained with Monte Carlo simulated data as our inversion
model. Other common inversion models, such as an iterative analytical solution based on the P1
approximation to the radiative transport equation, were not applicable here due to the relatively
high absorption and low scattering at SWIR wavelengths. Others have utilized LUT-based inver-
sion models that directly map Rd to μa and μ 0

s on a per wavelength basis, but the addition of
spectral constraints requires an iterative error minimization process, which is especially complex
and computationally costly for highly discretized LUTs.27–29 A DNN, in contrast, enables inverse
solution to be found non-iteratively and rapidly. DNN inversion models have been utilized for a
number of different diffuse optical modalities,30 including in our prior work.31,32 One important
aspect of the DNN inversion used here was the incorporation of spectral constraints on the train-
ing data. While the DNN was not spectrally constrained per se, the constraint was effectively
imposed on the inversion process through the training process.

Limitations of this study include the fact that constraints were applied to the training data in
specific cases. For example, for the emulsion phantom study, it was assumed that water and lipid
concentrations summed to 100%. In tissue samples, other chromophores, such as hemoglobin,
may be present in abundance, so this constraint would have to be removed. Our D2O dilution
experiment involved training a DNN without this constraint, but only one other chromophore
(lipid) was present, and it was held constant. It remains to be seen if this method would be robust
enough to quantify simultaneously varying amounts of both water and lipid in the presence of
other chromophores. The DNN used for the D2O experiment was further constrained as the
scattering properties of the training data were fixed to that of 1% Intralipid solution in water.
For future in vivo measurements, a scattering estimate could be assumed for different tissue
types. That said, the water-in-oil emulsion phantom study did not incorporate a fixed scattering
constraint, which suggests that the spectral constraints with our method may be sufficient for
recovering water and lipid with unknown scattering in other applications.

In this work, we first confirmed the theoretical performance benefits of SWIR over NIR
wavelengths in simulation, designed and fabricated a novel wearable SWIR probe, and charac-
terized its performance. We then validated its sensitivity to water and lipid, and in doing so
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demonstrated its ability to quantify concentrations of these chromophores accurately in vitro.
This opened the door to human studies that aim to test the functionality and utility of this probe
in vivo for a variety of applications.
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