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Abstract. A discriminative deep transfer metric learning method called DDTML is proposed for cross-scenario
person re-identification (Re-ID). To develop the Re-ID model in a new scenario, a large number of pairwise
cross-camera-view person images are deemed necessary. However, this work is very expensive due to
both monetary cost and labeling time. In order to solve this problem, a DDTML for cross-scenario Re-ID is pro-
posed using the transferring data in other scenarios to help build a Re-ID model in a new scenario. Specifically, to
measure distribution difference across scenarios, a maximum mean discrepancy based on class distribution
called MMDCD is proposed by embedding the discriminative information of data into the concept of the maxi-
mum mean discrepancy. Unlike most metric learning methods, which usually learn a linear distance to project
data into the feature space, DDTML uses a deep neural network to develop the multilayers nonlinear transfor-
mations for learning the nonlinear distance metric, while DDTML transfers discriminative information from the
source domain to the target domain. By bedding the MMDCD criteria, DDTML minimizes the distribution diver-
gence between the source domain and the target domain. Experimental results on widely used Re-ID datasets
show the effectiveness of the proposed classifiers.©The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
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1 Introduction
For the last decade, surveillance systems have become an
active research topic of computer vision, since they have
become ubiquitous in public places such as airports, railway
stations, college campuses, and office buildings.1–2 There are
a large number of cameras in surveillance systems and they
provide huge amounts of video data. The analysis of the
computer vision abstained in a surveillance system often
requires the ability to track people across multiple cameras.
Therefore, person re-identification (Re-ID) model is gener-
ating more and more interests.3–8 Re-ID has been widely
treated as a recognition problem of matching different per-
sons across disjoint cameras.9–11 In the past five years, a large
number of models have been proposed for Re-ID models.
The current work can be categorized generally into two
types: (1) designing of discriminative, descriptive, and robust
visual descriptors to characterize a person’s appearance12–15
and (2) learning suitable distance metrics that maximize the
chance of a correct correspondence.16–20 In this paper, we
focus on the second type, i.e., we learn the optimal distance
measure to give correct matches in Re-ID.

However, it is not easy to develop a deployable and effi-
cient Re-ID model in a new scenario (e.g., from an indoor
classroom to an outdoor square). First, due to different illu-
mination environments, posture, and view angle, the robust
features obtained in one scenario will not have good perfor-
mance for another scenario. Second, in order to obtain a
robust Re-ID model, one must collect a large number of
labeled person images about the new scenario for training.

However, the work is very expensive due to both monetary
cost and labeling time. Some unsupervised methods are pro-
posed to address this problem. For example, Ma et al.21 intro-
duced a time shift dynamic time warping model for
unsupervised person representation. Ye et al.22 proposed a
dynamic graph matching method to mine the intermediate
estimated labels across disjoint cameras, and then with the
estimated labels, its remaining steps can be considered as
a supervised learning method. However, compared to super-
vised Re-ID methods, the matching performance of unsuper-
vised methods is less effective when a person recognizable is
under severe appearance changes.23

Recently, transfer learning mechanism has been widely
used in Re-ID. The principal goal of transfer learning is
to help build a Re-ID model in a new scenario (target
domain) by leveraging the data collected from the other sce-
narios (source domain).24 For example, in a crowded station,
there may exist of a large number of data used for building
some Re-ID models for their own respective scopes. In order
to build a Re-ID model for a new scenario, we may use these
existed data in the source domain without collecting a lot of
labeled data in the target domain. In Ref. 25, it is demon-
strated that certain discriminative information or common
variations (such as pose and resolution) shared in different
scenarios can lead to significant performance gains in a
new scenario. Different from original multitask learning
which aims to benefit all tasks both on the target domain
and source domain, transfer learning for Re-ID mainly
aims to benefit the target one.

In this work, we first propose a maximum mean discrep-
ancy based on class distribution called MMDCD to measure
distribution difference across domains. MMDCD embeds the
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discriminative information of data taken from the source
domain into the concept of the maximum mean discrepancy
(MMD).26 Minimizing MMDCD leads to minimize the dis-
tribution difference across domains in a supervised way.
Then we propose a discriminative deep transfer metric learn-
ing method called DDTML for cross-scenario transfer Re-
ID. Figure 1 shows the basic idea of the proposed method.
Using a deep neural network, DTDML learns a set of multi-
layers nonlinear transformations to transfer discriminative
information from the source domain to the target domain;
meanwhile, DTDML reduces the distribution divergence
between the source data and the target data by minimizing
MMDCD at the top layer of the network.

The contribution of this work can be summarized in the
following three aspects.

(1) Unlike MMD working in an unsupervised way,
MMDCD works in a supervised way, which not
only exploits the discriminative information of
data taken from the source domain, but also sets dif-
ferent coefficients for matched/mismatched pairs.
Minimizing MMDCD could enhance the discrimi-
nant ability of DTDML.

(2) By embedding MMDCD into a deep metric network,
DDTML learns a set of multilayers nonlinear trans-
formations to better exploit the discriminative infor-
mation for cross-scenario Re-ID tasks.

(3) Extensive experiments on several Re-ID datasets are
conducted and the experimental results demonstrate
that the proposed method DDTML obtains better
performance compared with several state-of-the-art
methods.

2 Related Work
According to the process of Re-ID, existing works can be
generally divided into two categories, namely, seeking robust
features methods and seeking the optimal distance learning
methods. The goal of seeking robust features methods is to
increase their representative capability. For example, Ma
et al.27 proposed a BiCov descriptor based on Gabor filters
and the covariance descriptor to track persons. Kviatkovsky
et al.28 constructed an invariant intradistribution structure of
color to adopt with a wide range of imaging conditions. Yang
et al.29 developed a robust semantic salient color names-
based color descriptor to calculate photometric variance.

However, descriptors of visual appearance are so highly
susceptible to cross-view variations and heavily rely on fore-
ground segmentations that it is difficult for them to achieve a
balance between discriminative power and robustness.

As the popular similarity distance learning methods, the
goal of metric learning methods is to find a distance or sim-
ilarity function of extracted features from different persons’
images to make the most likely correct matching. For exam-
ple, Pedagadi et al.30 applied a two-stage method, local
Fisher discriminant analysis (LFDA), in a low-manifold
learning framework using principal component analysis
(PCA) and the LFDA. Kostinger et al.16 proposed a metric
learning principle of keeping it simple and straightforward
(KISSME) to learn a distance metric from equivalence con-
straints based on a statistical inference perspective. Hu
et al.31 exploited the discriminative information to propose
a discriminative deep metric learning (DDML), which is a
major reference of this paper.

Note that cross-scenarios transfer learning has been
adopted for Re-ID methods in the hope that the target domain
(new scenario) can exploit transferable discriminative infor-
mation from the source domain (other scenarios) with
labeled images. For example, Wang et al.25 proposed the con-
strained asymmetric multitask discriminative component
analysis (cAMT-DCA) method to explore discriminative
modeling in the shared latent space for cross-scenarios trans-
fer learning. Cheng et al.32 proposed a transfer metric learn-
ing method OurTransD to learn both the commonalities and
the personality of the data from different scenarios jointly.
Zhang et al.33 proposed a two-stage transfer metric learning
(TSTML) method, which transfers the generic knowledge
information from the source set in the first stage and then
transfers the distance metric for each probe-specific
person in the second stage. In terms of similarity function,
optimization method, whether a transfer learning and deep
learning method, Table 1 summarizes seven Re-ID methods,
i.e., LFDA, KISSME, DDML, TSTML, cAMT-DCA,
OurTransD, and DDTML, which is proposed in this study.
Different from the other three transfer learning methods, our
proposed DDTML uses a deep learning network to learn a
set of multilayer nonlinear projections for the cross-scenario
transfer learning. In particular, an MMDCD is proposed to
measure distribution difference across domains.

3 Proposed Methods

3.1 Discriminative Deep Metric Learning
DDML method is originally proposed for face verification in
the wild. DDML uses a deep neural network to learn the non-
linear mapping function of samples for projecting face sam-
ples into the feature space.

Assume DDML constructs a deep neural network with
M þ 1 layers, pðmÞ is the units in the m’th layer, where
m ¼ 1; 2; : : : ;M. For a given person image sample x ∈ Rd,
hð0Þ ¼ x is the original input of the network and hð1Þ ¼
φ½Wð1Þxþ bð1Þ� ∈ Rpð1Þ

is the output of the first layer,
whereWð1Þ and bð1Þ are the projection matrix and bias vector
in the first layer, respectively. φðÞ is a nonlinear activation
function, which operates component wisely, such as widely
used tanh or sigmoid functions. Then using hð1Þ as the input
of the second layer, we can obtain the output of this layer
hð2Þ, i.e., hð2Þ ¼ φ½Wð2Þhð1Þ þ bð2Þ� ∈ Rpð2Þ

. In this case,
we can obtain the output of topmost layer fðxÞ

Fig. 1 Framework of the proposed method DDTML.
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EQ-TARGET;temp:intralink-;e001;63;496fðxÞ ¼ hðMÞ ¼ φ½WðMÞhðM−1Þ þ bðMÞ� ∈ RpðMÞ
; (1)

where f∶Rd ↦ RpðMÞ
is a parametric nonlinear function

determined by the parameters WðmÞ and bðmÞ (m ¼
1; 2; : : : ;M).

For two person images xi and xj, they will be finally rep-
resented as fðxiÞ ¼ hðMÞ

i and fðxjÞ ¼ hðMÞ
j at the topmost

layer of the network. Then using the squared Euclidean dis-
tance, the distance between xi and xj at the top level can be
measured as

EQ-TARGET;temp:intralink-;e002;63;384d2fðxi; xjÞ ¼ kfðxiÞ − fðxjÞk22: (2)

The optimization problem of DDML is designed as fol-
lows:

EQ-TARGET;temp:intralink-;e003;63;329arg min
f

J ¼ 1

2

X
i;j

gf1 − lij½τ − d2fðxi; xjÞ�g

þ λ

2

XM
m¼1

½kWðmÞk2F þ kbðmÞk22�; (3)

where the function gðzÞ ¼ 1
β log½1þ expðβzÞ� is the

smoothed approximation for ½z�þ ¼ maxðz; 0Þ, β is a sharp-
ness parameter, kAkF is the Frobenius norm, λ is a regulari-
zation parameter, and τ is a threshold. The pairwise label lij
denotes the similarity of the pairs fxi; xjg: lij ¼ 1 means xi
and xj are matched image pairs, lij ¼ −1 means xi and xj
are mismatched image pairs. lij can be determined as fol-
lows:

EQ-TARGET;temp:intralink-;e004;63;152lij ¼
�

1; d2fðxi; xjÞ < τ − 1

−1; d2fðxi; xjÞ > τ þ 1
: (4)

From the optimization problem shown in Eq. (3), it can be
seen that without enough training data in a new scenario, we
cannot directly use data collected from different scenarios to

help build the Re-ID model in this new scenario. This is the
key problem we aim to solve in this work.

3.2 Discriminative Deep Transfer Metric Learning
method

Based on the projection scheme for deep neural network, we
learn a set of multilayers nonlinear transformations to project
the data in the source domain and target domain into the
same transformed space. Therefore, it is needed to measure
the distribution difference between the source domain and
target domain in this transformed space. As a well-known
criterion to estimate the distance between different distribu-
tions, MMD) is a nonparametric estimation criterion and it
does not need an intermediate density estimate.26 Let Xs ¼
fðxsi;ysiÞji¼ 1;2; : : : ;Nsg and Xt¼fðxti;ytiÞji¼1;2;:::;Ntg
be the training set in the source domain and target domain,
respectively, where both xsi and xti are the samples of dimen-
sionality d, ysi and yti are the labels of xsi and xti, respec-
tively, Ns and Nt are the numbers of training data in the
source domain and target domain, respectively. The distance
between distributions of two domains is equivalent to the dis-
tance between the mean of total-class data across domains,
which can be written as follows:26

EQ-TARGET;temp:intralink-;e005;326;240DtsðXt;XsÞ ¼
���� 1

Nt

XNt

i¼1

fðxtiÞ −
1

Ns

XNs

i¼1

fðxsiÞ
����
2

2

: (5)

However, MMD measures the distribution difference
between two domains in an unsupervised way. That is to
say, MMD ignores the label information of samples. In addi-
tion, for a practical transfer Re-ID task, there often exist imbal-
ance between matched (positive) image pairs and mismatched
(negative) pairs. In order to carry out effective transfer learn-
ing, we propose an MMDCD. MMDCD embeds the discrimi-
native information of data taken from the source domain into
the concept of the MMD by the following equation:

Table 1 LFDA, KISSME, DDML, TSTML, cAMT-DCA, and OurTransD versus DDTML.

Methods

Similarity function Optimization method

Transfer
learning

Deep
learning

Scatter
(divergence)

matrix
Mahalanobis
distance

Nonlinear
projection
distance

Eigenvalue
decomposition

Gradient
decent

Semidefinite
programming

LFDA30
✓ ✓

KISSME31
✓ ✓

DDML31 ✓ ✓ ✓

TSTML33
✓ ✓ ✓

cAMT-DCA25
✓ ✓ ✓

OurTransD32
✓ ✓ ✓

DDTML
(proposed
in this study)

✓ ✓ ✓ ✓
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EQ-TARGET;temp:intralink-;e006;63;752MMDCDtsðXt;XsÞ ¼
���� 1

Nt

XNt

i¼1

fðxtiÞ−
Nsþ

N2
sþ þN2

s−

XNsþ

i¼1

fðxþsiÞ

−
Ns−

N2
sþ þN2

s−

XNs−

i¼1

fðx−siÞ
����
2

2

; ð6Þ

where xþsi and x−si are the matched and mismatched image
samples in the source domain, respectively. Nsþ and
Ns−(Nsþ þ Ns− ¼ Ns) are the numbers of matched and mis-
matched image samples in the source domain, respectively.
Following the deep network learning strategy in Ref. 29,
the nonlinear representation fðxÞ can be computed using
Eq. (1) at the topmost layer of the network. Obviously, in
order to measure the distance between the mean of the data
across domains, MMDCD not only utilizes the label informa-
tion of data taken from the source domain, but also sets the
different coefficients to represent the weight of matched and
mismatched pairs according to their different sizes.

As shown in Fig. 1, DDTML constructs a deep neural net-
work to obtain the representations of data in the source
domain and target domain through a multiple layers of non-
linear transformations. Considering minimizing MMDCD at
the top layer of the network, the optimization problem of
DDTML can be given as follows:

EQ-TARGET;temp:intralink-;e007;63;478arg min
f

J ¼ 1

2

X
i;j

gf1 − lij½τ − d2fðxi; xjÞ�g

þ αMMDCD
ðMÞ
ts ðXt;XsÞ

þ β
XM
m¼1

½kWðmÞk2F þ kbðmÞk22�; (7)

where MMDCD
ðMÞ
ts ðXt;XsÞ is the MMDCD at the M’th

layer of deep neural network. αðα ≥ 0Þ and βðβ ≥ 0Þ are the
regularization parameters.

To solve the optimization problem in Eq. (7), we use the
stochastic subgradient descent scheme to obtain the param-
eters WðmÞ and bðmÞ, where m ¼ 1; : : : ;M. The gradient of
the objective function J with respect to the parameters WðmÞ
and bðmÞ can be computed as follows:
EQ-TARGET;temp:intralink-;e008;63;288

∂L
∂WðmÞ ¼

X
ij

h
ΔðmÞ

ij hðm−1ÞT
i þΔðmÞ

ji hðm−1ÞT
j

i

þ2α

�
1

Nt

XNt

i¼1

ΔðmÞ
ti hðm−1ÞT

ti þ Nsþ
N2

sþþN2
s−

XNsþ

i¼1

ΔðmÞ
siþh

ðm−1ÞT
siþ

þ Ns−

N2
sþþN2

s−

XNs−

i¼1

ΔðmÞ
si−h

ðm−1ÞT
si−

�
þ2βWðmÞ; (8)

EQ-TARGET;temp:intralink-;e009;63;172

∂L
∂bðmÞ ¼

X
ij

h
ΔðmÞ

ij þ ΔðmÞ
ji

i
þ 2α

�
1

Nt

XNt

i¼1

ΔðmÞ
ti

þ 1

Nsþ

XNsþ

i¼1

ΔðmÞ
siþ þ 1

Nsþ

XNsþ

i¼1

ΔðmÞ
si−

�
þ 2βbðmÞ; (9)

where hð0Þi ¼ xi and hð0Þj ¼ xj, h
ð0Þ
i and hð0Þj are the original

inputs.

For the M’th layer of our network, we can obtain the fol-
lowing updating equations:

EQ-TARGET;temp:intralink-;e010;326;730ΔðMÞ
ij ¼ g 0ðcÞlij½hðMÞ

i − hðMÞ
j �Θφ 0½zðMÞ

i �; (10)

EQ-TARGET;temp:intralink-;e011;326;696ΔðMÞ
ji ¼ g 0ðcÞlij½hðMÞ

j − hðMÞ
i �Θφ 0½zðMÞ

j �; (11)

EQ-TARGET;temp:intralink-;e012;326;666ΔðMÞ
ti ¼

�
1

Nt

XNt

j¼1

hðMÞ
tj −

Nsþ
N2

sþ þ N2
s−

XNsþ

j¼1

hðMÞ
sjþ

−
Ns−

N2
sþ þ N2

s−

XNs−

j¼1

hðMÞ
sj−

�
Θφ 0½zðMÞ

ti �; (12)

EQ-TARGET;temp:intralink-;e013;326;584ΔðMÞ
siþ ¼

�
Nsþ

N2
sþ þ N2

s−

XNsþ

j¼1

hðMÞ
sjþ þ Ns−

N2
sþ þ N2

s−

XNs−

j¼1

hðMÞ
sj−

−
1

Nt

XNt

j¼1

hðMÞ
tj

�
Θφ 0½zðMÞ

siþ �; (13)

EQ-TARGET;temp:intralink-;e014;326;501ΔðMÞ
si− ¼

�
Nsþ

N2
sþ þ N2

s−

XNsþ

j¼1

hðMÞ
sjþ þ Ns−

N2
sþ þ N2

s−

XNs−

j¼1

hðMÞ
sj−

−
1

Nt

XNt

j¼1

hðMÞ
tj

�
Θφ 0½zðMÞ

si− �: (14)

For the other layers m ¼ 1; 2; : : : ;M − 1 of our network,
we can obtain the following updating equations:

EQ-TARGET;temp:intralink-;e015;326;396ΔðmÞ
ij ¼ Wðmþ1ÞTΔðmþ1Þ

ij Θφ 0½zðmÞ
i �; (15)

EQ-TARGET;temp:intralink-;e016;326;361ΔðmÞ
ji ¼ Wðmþ1ÞTΔðmþ1Þ

ji Θφ 0½zðmÞ
i �; (16)

EQ-TARGET;temp:intralink-;e017;326;332ΔðmÞ
ti ¼ Wðmþ1ÞTΔðmþ1Þ

ij Θφ 0½zðmÞ
ti �; (17)

EQ-TARGET;temp:intralink-;e018;326;302ΔðmÞ
siþ ¼ Wðmþ1ÞTΔðmþ1Þ

si Θφ 0½zðmÞ
si− �; (18)

EQ-TARGET;temp:intralink-;e019;326;274ΔðmÞ
si− ¼ Wðmþ1ÞTΔðmþ1Þ

si Θφ 0½zðmÞ
si− �; (19)

where Θ denotes the element-wise multiplication. c and zðmÞ
i

(m ¼ 1; 2; : : : ;M) are given as follows:

EQ-TARGET;temp:intralink-;e020;326;223c ¼ 1 − lij½τ − d2fðxi; xjÞ�; (20)

EQ-TARGET;temp:intralink-;e021;326;190zðmÞ
i ¼ WðmÞhðm−1Þ

i þ bðmÞ: (21)

Then WðmÞ and bðmÞ can be updated using the gradient
descent algorithm until convergence as follows:

EQ-TARGET;temp:intralink-;e022;326;139WðmÞ ¼ WðmÞ − λ
∂L

∂WðmÞ ; (22)
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EQ-TARGET;temp:intralink-;e023;63;312bðmÞ ¼ bðmÞ − λ
∂L

∂bðmÞ ; (23)

where λ is the learning rate.
Based on the analysis above, we summarize the entire

construction procedure of DDTML in Algorithm 1.

4 Experiments

4.1 Datasets and Experimental Setting
In our experiments, four Re-ID datasets are adopted:
3DPeS,34 i-LIDS,35 CAVIAR,19 and VIPeR.36 The 3DPeS
dataset is a collection of 1011 person images of 192 individ-
uals from eight different surveillance cameras captured on an
academic campus. The i-LIDS dataset is a collection of 119
person images captured in airport. Each person is with an
average of four images. Therefore, i-LIDS consists of 476
images in total. The CAVIAR dataset is a collection of
1220 person images from 72 individuals with 10 to 20
images per person. The VIPeR dataset is a collection of
632 person images by two different camera views, so it con-
sists of 1264 images. In order to construct the transfer learn-
ing Re-ID model, we choose one dataset as the target dataset

and another dataset as the source dataset from the other three
datasets following the same settings of.25 So there are in total
12 cross-scenario transfer learning tasks.

In our experiments, all person images from the above four
datasets are scaled to 128 × 48 for feature extraction.
Following the same settings of Ref. 25, three kinds of fea-
tures descriptor: color, LBP, and HOG are generated for each
image. After extracting the feature vector, we use PCA to
compress them into 500-dimensional feature vectors.

For comparison purposes, six state-of-the-art Re-ID meth-
ods are applied to compare against our proposed DDTML.
The comparison methods can be grouped into two groups:
(1) nontransfer learning methods: LFDA,30 KISSME,31

and DDML31 and (2) transfer learning methods: geometry
preserving large margin nearest neighbor (GPLMNN),37

OurTransD,32 and cAMT-DCA.25 Furthermore, in order to
better observe the behavior of MMDCD, we develop
another transfer learning Re-ID method called DDTML-
MMD through replacing MMDCD in DDTML with
MMD criterion. We train a deep network with three layers
for DDTML, and its neural nodes are given as: 200 →
200 → 100 for all datasets. Based on our extensive experi-
ments, the tanh function is used in φðÞ function, and the
parameters α, β, τ, and λ are set to be 10−1, 10, 3, and
0.3, respectively.

In our experiments, we randomly split the target dataset
into two equal partitions; one partition is used as target train-
ing set and the other partition is used as target testing set. For
five transfer learning methods, all person images in the
source dataset and target training set are used for training,
and all images in the target testing set are used for testing.
For three nontransfer learning methods, all images in source
dataset are used for training. In particular, in order to observe
the performance change of nontransfer learning methods on
transfer datasets, LFDA and KISSME are trained in three
cases. LFDA-S and KISSME-S only use the source dataset
for training; LFDA-T and KISSME-T only use the target
dataset for training, whereas LFDA-Mix and KISSME-
Mix use both the source and target training datasets for
training.

Following Ref. 38, the performance of each method is
evaluated in terms of the cumulative matching characteristic
(CMC) in our experiments. The CMC represents the prob-
ability of finding the correct match over the top r image rank-
ing, with r varying from 1 to 20. The CMC described above
is usually used to measure the performance of closed-set Re-
ID problem. It assumes the same person can be found both in
the probe set and gallery set. But in many real-world scenar-
ios, this assumption is often not satisfied, e.g., the scenarios
with imposters. In order to simulate these open-set scenarios,
only images of 40% of the gallery people are randomly
removed. The receiving operating characteristic (ROC)
curve on i-LIDS as target dataset is used as the evaluation
metric to compare DDTML with other algorithms. In
order to make our results fair, we repeat the aforementioned
partition 10 times for each dataset, and both the CMC and
ROC curves for 10 runs are recorded.

4.2 Results and Analysis
In this section, we examine the effectiveness of the proposed
method DDTML by comparing their performance with
LFDA (LFDA-S, LFDA-T, and LFDA-Mix), KISSME

Algorithm 1 DDTML

Input: Training set: Source domain data Ds and target domain data
Dt ;

Parameters: α, β, τ, M , learning rate λ, convergence error ε, and total
iterative number T .

Output: Weights and biases fWðmÞ;bðmÞgMm¼1

Initialize: Initialize weights and biases

Optimization by back prorogation

for k ¼ 1;2; : : : ; T do

Compute MMDCD by Eq. (6)

Randomly select a sample pair

//Forward propagation

Compute hðmÞ
i and hðmÞ

j , where hðmÞ ¼ φ½WðmÞhðm−1Þ þ bðmÞ�,
m ¼ 1;2; : : : ; M

// Computing gradient

Compute gradients by Eqs. (8) and (9)

//Back propagation

Update WðmÞ and bðmÞ by Eqs. (22) and (23), m ¼ 1;2; : : : ; M

Compute Jk by Eq. (7)

If k > 1 and jJk − Jk−1j < ε, Return

end

Return fWðmÞ;bðmÞgMm¼1
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Table 2 Matching rate (%) on the VIPeR dataset as target dataset.

Methods Source r ¼ 1 r ¼ 5 r ¼ 10 r ¼ 20

LFDA-S i-LIDS 8.31 21.36 32.15 45.02

CAVIAR 8.41 20.98 30.21 42.15

3DPeS 8.59 20.96 29.37 46.82

LFDA-T i-LIDS 18.95 45.69 55.78 70.51

CAVIAR 18.95 45.69 55.78 70.51

3DPeS 18.95 45.69 55.78 70.51

LFDA-Mix i-LIDS 16.88 43.33 59.09 64.25

CAVIAR 16.28 39.66 54.22 64.91

3DPeS 16.08 422.63 57.85 64.87

KISSME-S i-LIDS 8.21 21.96 31.85 43.87

CAVIAR 9.37 19.06 28.36 43.75

3DPeS 9.77 19.05 28.31 40.25

KISSME-T i-LIDS 19.38 47.36 55.99 70.58

CAVIAR 19.38 47.36 55.99 70.58

3DPeS 19.38 47.36 55.99 70.58

KISSME-Mix i-LIDS 15.11 35.17 49.62 63.97

CAVIAR 8.96 19.25 29.36 39.68

3DPeS 12.35 30.58 44.12 57.11

DDML i-LIDS 16.36 41.08 52.65 65.34

CAVIAR 18.18 40.35 52.02 63.55

3DPeS 18.99 46.63 52.32 65.56

GPLMNN i-LIDS 20.98 47.98 65.96 72.33

CAVIAR 21.35 48.16 65.20 72.21

3DPeS 21.22 48.02 65.35 72.98

DDTML-MMD i-LIDS 21.23 47.38 64.67 72.11

CAVIAR 21.57 48.33 65.33 72.19

3DPeS 21.86 48.46 65.70 72.56

cAMT-DCA i-LIDS 22.09 47.77 65.53 73.11

CAVIAR 21.57 48.88 65.67 73.26

3DPeS 21.29 48.91 65.56 75.74

OurTransD i-LIDS 22.45 47.98 65.59 73.11

CAVIAR 22.09 47.85 65.87 73.23

3DPeS 21.11 47.96 65.77 73.24

DDTML i-LIDS 25.11 53.26 67.22 79.34

CAVIAR 25.18 53.44 66.31 79.65

3DPeS 24.63 53.71 66.59 79.48

Table 3 Matching rate (%) on the i-LIDS dataset as target dataset.

Methods Source r ¼ 1 r ¼ 5 r ¼ 10 r ¼ 20

LFDA-S VIPeR 28.31 50.22 61.11 75.85

CAVIAR 28.07 48.21 61.85 75.29

3DPeS 30.92 52.13 65.49 75.21

LFDA-T VIPeR 29.10 49.66 63.98 75.22

CAVIAR 29.10 49.66 63.98 75.22

3DPeS 29.10 49.66 63.98 75.22

LFDA-Mix VIPeR 30.98 52.01 62.35 77.32

CAVIAR 30.01 50.99 62.52 77.96

3DPeS 30.25 48.93 62.31 78.26

KISSME-S VIPeR 31.21 50.35 62.87 75.96

CAVIAR 26.39 48.24 64.47 75.25

3DPeS 29.36 53.18 67.45 75.21

KISSME-T VIPeR 19.25 39.86 52.31 65.23

CAVIAR 19.25 39.86 52.31 65.23

3DPeS 19.25 39.86 52.31 65.23

KISSME-Mix VIPeR 34.89 53.29 66.99 76.52

CAVIAR 25.31 44.28 58.04 77.19

3DPeS 27.03 43.69 56.19 77.11

DDML VIPeR 28.78 50.79 59.33 77.15

CAVIAR 29.45 46.58 61.87 76.66

3DPeS 29.85 47.93 61.15 77.43

GPLMNN VIPeR 32.98 55.91 67.11 78.69

CAVIAR 33.15 55.39 67.19 79.25

3DPeS 33.47 56.87 68.24 78.65

DDTML-MMD VIPeR 32.80 55.76 66.97 78.45

CAVIAR 33.09 55.23 66.65 78.67

3DPeS 33.36 55.69 66.19 78.39

cAMT-DCA VIPeR 32.56 53.52 66.78 78.99

CAVIAR 33.17 54.91 67.21 77.87

3DPeS 33.68 55.98 67.37 78.69

OurTransD VIPeR 32.71 54.77 67.67 78.58

CAVIAR 33.25 55.33 67.49 78.76

3DPeS 33.67 55.87 67.14 79.25

DDTML VIPeR 36.22 61.03 69.49 81.02

CAVIAR 33.90 56.87 70.58 81.15

3DPeS 34.51 57.89 69.27 81.23

Journal of Electronic Imaging 043026-6 Jul∕Aug 2018 • Vol. 27(4)

Ni et al.: Discriminative deep transfer metric learning. . .



Table 4 Matching rate (%) on the CAVIAR as target dataset.

Methods Source r ¼ 1 r ¼ 5 r ¼ 10 r ¼ 20

LFDA-S VIPeR 27.03 47.93 60.29 80.22

3DPeS 26.96 46.58 61.53 81.00

i-LIDS 25.33 46.62 61.11 80.44

LFDA-T VIPeR 24.95 43.97 58.34 78.88

3DPeS 24.95 43.97 58.34 78.88

i-LIDS 24.95 43.97 58.34 78.88

LFDA-Mix VIPeR 30.91 50.16 61.25 83.33

3DPeS 30.11 51.17 66.55 83.20

i-LIDS 32.19 52.75 66.58 84.93

KISSME-S VIPeR 18.32 50.55 62.22 77.55

3DPeS 18.56 52.01 62.29 79.29

i-LIDS 18.26 51.25 62.03 79.58

KISSME-T VIPeR 29.38 35.02 51.26 76.53

3DPeS 29.38 35.02 51.26 76.53

i-LIDS 29.38 35.02 51.26 76.53

KISSME-Mix VIPeR 29.33 50.22 66.85 83.26

3DPeS 28.55 51.44 67.23 83.75

i-LIDS 29.86 52.15 68.32 85.54

DDML VIPeR 30.19 50.49 65.23 83.21

3DPeS 28.59 51.68 65.96 82.74

i-LIDS 29.19 50.29 63.81 84.77

GPLMNN VIPeR 33.29 55.22 69.22 86.51

3DPeS 34.52 54.89 69.87 87.55

i-LIDS 33.88 54.68 70.41 87.96

DDTML-MMD VIPeR 33.99 55.18 70.34 86.12

3DPeS 34.87 54.98 70.78 87.13

i-LIDS 34.69 54.77 70.86 87.59

cAMT-DCA VIPeR 34.12 55.77 69.69 87.21

3DPeS 34.25 55.29 70.13 87.02

i-LIDS 34.11 54.65 70.67 87.39

OurTransD VIPeR 34.67 55.79 70.35 89.93

3DPeS 34.38 55.87 70.11 87.55

i-LIDS 34.55 56.08 70.58 87.75

DDTML VIPeR 35.19 59.55 72.36 89.57

3DPeS 36.30 58.26 74.11 89.29

i-LIDS 35.22 58.36 72.05 90.15

Table 5 Matching rate (%) on the 3DPeS dataset as target dataset.

Methods Source r ¼ 1 r ¼ 5 r ¼ 10 r ¼ 20

LFDA-S VIPeR 29.39 49.32 62.22 73.25

i-LIDS 30.99 51.11 62.34 74.18

CAVIAR 29.33 51.28 62.17 74.81

LFDA-T VIPeR 26.55 47.29 60.28 71.98

i-LIDS 26.55 47.29 60.28 71.98

CAVIAR 26.55 47.29 60.28 71.98

LFDA-Mix VIPeR 26.39 48.32 57.21 68.32

i-LIDS 26.78 48.77 59.86 70.21

CAVIAR 23.41 42.59 53.26 65.98

KISSME-S VIPeR 28.26 44.96 54.08 66.49

i-LIDS 27.21 43.32 55.57 66.41

CAVIAR 25.69 43.99 53.00 66.36

KISSME-T VIPeR 12.56 29.63 43.75 57.93

i-LIDS 12.56 29.63 43.75 57.93

CAVIAR 12.56 29.63 43.75 57.93

KISSME-Mix VIPeR 28.36 49.57 59.21 70.58

i-LIDS 25.68 46.35 57.68 70.55

CAVIAR 22.14 38.77 50.85 62.71

DDML VIPeR 23.45 52.69 57.49 70.25

i-LIDS 25.78 52.66 61.18 68.98

CAVIAR 25.11 52.99 57.18 67.01

GPLMNN VIPeR 31.08 53.74 64.17 75.29

i-LIDS 31.42 53.17 63.50 75.68

CAVIAR 31.05 54.28 63.59 75.49

DDTML-MMD VIPeR 30.93 53.26 63.21 74.34

i-LIDS 30.98 53.58 63.36 75.21

CAVIAR 31.12 54.57 63.86 74.83

cAMT-DCA VIPeR 31.44 53.87 64.31 75.19

i-LIDS 31.29 55.51 63.67 75.32

CAVIAR 31.35 54.33 63.87 75.03

OurTransD VIPeR 31.36 53.89 64.17 75.11

i-LIDS 31.54 53.58 63.50 75.75

CAVIAR 30.57 54.53 63.59 75.46

DDTML VIPeR 32.15 55.39 65.78 77.49

i-LIDS 33.47 55.27 65.14 77.58

CAVIAR 32.78 55.46 65.28 78.15
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(KISSME-S, KISSME-T, and KISSME-Mix), DDML,
GPLMNN, DDTML-MMD, OurTransD, and cAMT-DCA
on 12 cross-scenario transfer Re-ID datasets. The experimen-
tal results of CMC are shown in Tables 2–5, respectively.
Best results are in boldface font. The ROC curves of
eight methods (LFDA-Mix, KISSME-Mix, DDML,
GPLMNN, DDTML-MMD, OurTransD, cAMT-DCA, and
DDTML) on the i-LIDS dataset as target dataset are
shown in Fig. 2. Because the performance of both LFDA-
S and LFDA-T is weaker than LFDA-Mix and the perfor-
mance of both KISSME-S and KISSME-T is weaker than
KISSME-Mix, the ROC curves of these four methods are
not demonstrated in Fig. 2.

From Tables 2–5 and Fig. 2, we can have the following
conclusions:

(1) Compared with transfer learning methods, although
DDML, LFDA, and KISSME are the popular dis-
criminant distance learning methods, their perfor-
mances are weaker than transfer metric learning
methods. In particular, we can also see that LFDA-
S and KISSME-S obtain better performance than
LFDA-T and KISSME-T except for the case with
VIPeR as target dataset. The reason is that there
are much more intraperson pairs in the source dataset

than pairs in the target dataset; using such a target
dataset it cannot have enough intraperson pairs to
train a reliable metric learning model. In addition,
due to the existence of cross-domain differences,
LFDA-Mix and KISSME-Mix cannot consider the
essential discrepancies across domains; they obtain
lower performance than five transfer learning
methods.

(2) Compared with DDTML-MMD, DDTML performs
better because the proposed MMDCD criterion in
DDTML efficiently exploits the discriminative infor-
mation of data in the source domain. Minimizing
MMDCD can better help to minimize the distribution
difference between the source domain and target
domain.

(3) Compared with the other three transfer learning meth-
ods GPLMNN, OurTransD, and cAMT-DCA,
DDTML achieves the satisfactory performance. In
particular, it obtains the best average matching rate
in 10 out of the 12 datasets. It is because that
DDTML uses a deep neural network to learn a set
of multiple layers nonlinear transformations, so
that more reliable representations of data in the fea-
ture space can be well exploited.
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Fig. 2 Performance comparison using ROC curves on the i-LIDS dataset as target dataset. (a) 3DPeS,
(b) CAVIAR, and (c) VIPeR as source dataset.
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(4) From the aforementioned four tables, we can observe
that when using VIPeR as target dataset, the perfor-
mances for all the methods are all lower. This is
because there are about 316 person images in the
test dataset for VIPeR, whereas average 60 person
images in the other three datasets. Thus it is hard
to find the correct match from a larger gallery.
However, DDTML achieves the best performance
on this dataset. This further indicates that DDTML
can specifically consider the essential discrepancy
across domains.

(5) Similar results are also observed on the ROC curves
on the i-LIDS dataset as target dataset under the open-
set setting. DDTML achieves the satisfactory perfor-
mance. It can be clearly seen that our proposed
DDTML is very suitable for transfer learning Re-
ID tasks.

5 Conclusion
In this paper, by integrating DDML with transfer learning,
we propose a DDTML method to learn a distance metric
that measures the similarity between image pairs of Re-ID
dataset. But DDTML is not a simple transfer learning version
of DDML. Taking account of the discriminative information
of data and inherent characteristics of Re-ID dataset, the
developed method also utilizes an MMDCD to minimize
the distribution divergence of source data and target data.
Extensive experimental results on the 3DPeS, i-LIDS,
CAVIAR, and VIPeR datasets have shown that our method
outperforms the state-of-the-art methods on most of the
cross-scenario transfer Re-ID tasks. Since the formula
of MMDCD is uncomplicated, how to take full advantage
of the Re-ID dataset is still an interesting direction of future
work.
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