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Abstract

Purpose: The objective of this study is to quantitatively evaluate terahertz (THz) imaging for
differentiating cancerous from non-cancerous tissues in mammary tumors developed in response
to injection of N-ethyl-N-nitrosourea (ENU) in Sprague Dawley rats.

Approach: While previous studies have investigated the biology of mammary tumors of this
model, the current work is the first study to employ an imaging modality to visualize these
tumors. A pulsed THz imaging system is utilized to experimentally collect the time-domain
reflection signals from each pixel of the rat’s excised tumor. A statistical segmentation algorithm
based on the expectation-maximization (EM) classification method is implemented to quanti-
tatively assess the obtained THz images. The model classification of cancer is reported in terms
of the receiver operating characteristic (ROC) curves and the areas under the curves.

Results: The obtained low-power microscopic images of 17 ENU-rat tumor sections exhibited
the presence of healthy connective tissue adjacent to cancerous tissue. The results also demon-
strated that high reflection THz signals were received from cancerous compared with non-cancer-
ous tissues. Decent tumor classification was achieved using the EM method with values ranging
from 83% to 96% in fresh tissues and 89% to 96% in formalin-fixed paraffin-embedded tissues.

Conclusions: The proposed ENU breast tumor model of Sprague Dawley rats showed a poten-
tial to obtain cancerous tissues, such as human breast tumors, adjacent to healthy tissues. The
implemented EM classification algorithm quantitatively demonstrated the ability of THz imag-
ing in differentiating cancerous from non-cancerous tissues.
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1 Introduction

Terahertz (THz) imaging has emerged as a potential clinical technology for noninvasive and
nonionizing evaluation of breast tumor margins.'~ Leveraging its sensitivity to water content,
THz imaging has been used to determine the differences between normal and diseased tissue in
several organs.®™'* To establish the feasibility of THz imaging for imaging breast tumor margins,
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we and others have shown the ability of THz imaging to distinguish between tumors and the
surrounding fatty tissue in subcutaneous tumor xenograft models of breast cancer.''™'* These
tumor models are established from subcutaneous injections of immortalized cancer cells and
result in the formation of distinct tumor cells and fatty tissue compartments. However, these
tumors are nearly devoid of fibrous tissue and therefore do not adequately represent the complex-
ity of human breast cancer. Recent work from our group demonstrated the first THz imaging
study'® in a transgenic mouse model of breast cancer [mouse mammary tumor virus-polyoma
middle T antigen (MMTV-PyMT)], which has been used extensively as a preclinical model of
breast cancer due to its similarities to the complexity and progression of human breast cancer.'®!”
Despite the incredible tumor heterogeneity that was similar to what we have observed in our
studies of human breast cancer,*'®! there were appreciable differences in THz signal between
different tumor compartments, such as fibrous, adipose (with and without tumor infiltration),
tumor, and glandular secretions. However, the relative contributions of fatty and fibrous tissue
to these tumors were still not reflective of human breast cancer.”” Specifically, these transgenic
tumors exhibit progressive degradation of the extracellular matrix with tumor progression, result-
ing in nearly 70% to 80% of the tumor being composed of adipose tissue at the time of tumor
excision in our study. In our previous work,* we reported tomographic images of freshly excised
cancerous and healthy tissues obtained from patients and breast reduction surgeries, respectively.
It is a continuous challenge, in cost and frequency, to acquire an adequate number of freshly
excised human tumors that include normal tissue adjacent to cancerous tissue needed to assess
the tumor margins. While no model can perfectly replicate human disease, our use of THz im-
aging and image analysis algorithms that leverage differences in the reflection signatures from
different tissue compartments necessitate the use of a model that is a closer representation of the
human breast tumors.

The development of carcinogen-induced mammary tumors in rodents has been used as a
preclinical model, albeit not as extensively as transgenic or tumor xenograft models. Studies
have shown that injection of N-ethyl-N-nitrosourea (ENU) results in reliable growth of benign
and malignant mammary tumors.”>> These tumors have several similarities to human breast
cancer, including elevated serum calcium and local invasion into the stroma and muscle.
Rats were found to develop mammary tumors between 50- and 155-days post-injection.”
As such, the ENU model of breast cancer has the potential to present tumors that are like human
breast tumors in both complexity and composition (i.e. presence of cancerous adjacent to fatty
and healthy connective tissues).

The objective of this study is to determine the ability of THz imaging to differentiate cancer-
ous and non-cancerous tissue in mammary tumors that develop in response to injection of ENU in
rats. While previous studies by others conducted investigations of mammary tumor biology in
these models,’*2® this is the first study to employ an imaging modality to visualize these tumors.
In addition to imaging cancer and non-cancer tissue within each tumor in both fresh and formalin-
fixed paraffin-embedded forms (FFPE), we also report the results of a new classification analysis
based on the expectation-maximization (EM) technique® and a side-by-side comparison with
xenograft and transgenic mice models. To ensure an objective comparison across all tumor mod-
els, our classification algorithm only considers two compartments—cancer and non-cancer.

This work is organized as follows. Methodology describing the rodent injections, pulsed THz
imaging system, pre-image preparation of fresh tumor tissue, and image segmentation based on
the EM technique are discussed in Sec. 2, results of THz imaging of ENU-rat tumors, a com-
parison to other mice tumor models, and THz image analysis and classification are presented in
Sec. 3, and conclusion and future work are discussed in Sec. 4. The microscopic imaging and
image analysis procedure is discussed in Appendix A.

2 Methodology

2.1 ENU Tumor Induction in Rats

All the rats handled in this work were injected with ENU chemical solution at Oklahoma State
University. Two batches of ten 30-day old female Sprague Dawley rats were purchased from
Charles River, Wilmington, Massachusetts, and housed to acclimate for at least two days after
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arrival. The rats were kept two per cage in static filtered microisolator cages with corn cob bed-
ding (Bed-o’Cobs, Maumee, Ohio). Rats were fed rodent chow (Lab Diet 5001, St. Louis,
Missouri) and tap water ad libitum. The weight of the rats ranged between 150 and 186 grams.
An amount of 15 ml of phosphate citrate buffer (Sigma-Aldrich, Milwaukee, Wisconsin) was
infused into the ipsopac containing the ENU solution (Sigma-Aldrich, Milwaukee, Wisconsin).
The rats were given 165 mg/kg of the ENU solution intraperitoneally in the lower right quadrant
of the peritoneal cavity. All the animal procedures were performed in a chemical safety fume
hood.*® The cages were changed every four days, with the waste being handled as chemical
hazardous for the first four days. Two weeks after inoculation, the rats were shipped to the
University of Arkansas, where they were housed in the animal facility. The rats were maintained
at standard 12-h light/dark cycles with regular access to food and water. Tumors were excised
between 9 and 21 weeks, with sizes ranging between 8 and 18 mm in diameter.

The protocols for injecting rats with ENU chemical to produce mammary tumors were
approved by the Institutional Animal Care and Use Committee (IACUC) of the Oklahoma
State University. Additionally, protocols for all rat experiments were approved by IACUC of
the University of Arkansas.

2.2 Pulsed Terahertz Imaging System

The diagram of the pulsed THz system utilized in this work is shown in Fig. 1. The THz emitter
and receiver antennas are voltage-biased bow-tie antennas on the GaAs substrate.>! Figure 1(c)
show the generated THz signal upon excitation with a 780-nm wavelength Ti: sapphire laser
beam. The Fourier transform of the time-domain pulse gives the spectrum ranging from 0.1
to 4 THz [Fig. 1(d)]. The generated THz pulse is directed onto the tissue sample, and the
reflected signal is collected at the receiver antenna. For fresh tissue imaging, the specimen
is placed between two polystyrene plates. The incident THz signal is directed on this
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Fig. 1 Terahertz system diagram in reflection mode (a) for fresh tissue placed between two poly-
styrene plates; (b) for FFPE tissue block; (c) time-domain THz pulse; (d) Fourier transform of the
THz pulse in (c); and (e) reflection signals from the polystyrene-tissue arrangement in (a).
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polystyrene-tissue arrangement, and the reflected signal is recorded at the receiver antenna. In
this case, two reflected pulses are received, one from the air-polystyrene interface and the second
from the polystyrene-tissue interface [Fig. 1(e)]. To record the reflected data from the tissue, the
first pulse is windowed-out, and only the second pulse is recorded at each pixel on the tissue.?! In
this case, the power spectra image is constructed across a frequency range from 0.5 to 1 THz as

10THz B, (f)[?
Spectral power = / 2 | Egamp (f)|

——d 1
0.5 THz |Eref(f)|2 f ( )

where Eg,, is the magnitude of the Fourier transform reflected sample signal, E; is a single
point reference signal obtained from the air-polystyrene interface, and f is the frequency in THz.
For the FFPE block tissue imaging, the block is placed directly onto the scanner, and the reflected
time-domain peak signal is collected at each pixel to construct the time-domain THz image.'®

2.3 Pre-image Preparation of Fresh Tumor Tissue

Upon excising the tumor from the rat with adequate healthy normal margin, it was immersed in
phosphate-buffered saline for transfer from the excision site to the THz lab in the same building.
As shown in Fig. 2(a), the bulk tumor was bisected into two halves, such that each section has
surrounding healthy normal tissue in Fig. 2(b).

For performing THz imaging, the tumor was first dried for around 3 to 4 min on a grade-1
filter paper [Fig. 2(c)]. The tumor section was then positioned between two polystyrene plates
with gentle pressure from the top to make the tumor surface as flat as possible for imaging, as
shown in Fig. 2(d). We have not observed tissue dehydration due to air exposure as reported in
Ref. 31. The main reason was that during the ~35 min scanning process, the tissue was placed
between two polystyrene plates as shown in Fig. 2(d). This arrangement minimized tissue expo-
sure to air and hence minimized tissue dehydration. In addition, during the scanning we often
observe excess fluids at the tissue perimeter indicating that tissue maintains hydration. This tis-
sue arrangement was then placed on the scanning window prepared for the reflection imaging,
Fig. 2(e). The xy scanner motors were set to increment at every 200-um step size to collect
reflection data at each pixel on the specimen.’! The THz imaging system scans the tissue using
a raster scanner of different motor step size that ranges from 50 to 500 ym. While using a step
size of 50 um provides a higher resolution image,'® the time consumed in the raster scanner
drastically increases depending on the tissue size. For example, the rat tumor #2-section 2 fresh
tissue of size ~16.5 X 11 X 5.9 mm, shown in Fig. 4(g), took ~25 min to produce the THz
image using 200 um. It is estimated that imaging the same sample could take ~388 min using
50-um step size. Therefore, in this work, a step size of 200 um is selected to quickly provide
adequate image resolution to differentiate between tumor tissue types with a reasonable trade-off
in scanning time. After completing the scanning, the tissue was immersed in a 10% buffered
formalin solution and shipped to the Oklahoma Disease Diagnostic Laboratory for the histopa-
thology process. In the histopathology process, all the fluid and lipids were extracted from the
tissue (dehydrated tissue). Finally, the tumor was embedded in a paraffin block from which a
3- to 4-um thick flat tissue section was sliced, stained with standard hematoxylin and eosin
(H&E) ink, and fixed on glass slides. The FFPE tissue block and the H&E stained tissue glass

Fig. 2 Rat# 1 fresh tissue preparation for THz imaging. (a) Photograph of bulk tumor excised from
rat tumor #1; (b) bulk tumor bisected into two halves; (c) tumor placed on filter paper to remove
excess fluid; (d) tumor positioned between two polystyrene plates; and (e) polystyrene-tumor-
polystyrene arrangement placed on the scanning window.
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slides are imaged using the THz reflection imaging system and the Nikon SMZ745T and NIKON
Eclipse Ci microscopes, respectively. The scanner motors in the THz system were first set up to
400-pum step size to obtain quick images for adjusting the boundaries, but a finer step size of
200 pm was used to obtain the final THz images shown in this work.

2.4 Image Segmentation Based on the Expectation-Maximization Technique

The THz images were assessed with respect to the pathology images as the ground truth of
tumors. However, a pathology image has an inherently higher resolution than the THz image.
Additionally, due to the dehydration process that the sample goes through during the histopa-
thology process, a shape mismatch occurs between the pathology image and the THz image
of fresh tissue.’” Due to these factors and to compare the two images at a neutral ground, two
statistical processes are implemented. First, a mesh morphing algorithm is used to digitize the
pathology image and generate a classification at the same resolution and orientation as the THz
image as reported in Ref. 13. Our algorithm in Ref. 13 is implemented here to correct the align-
ment, resolution, and shape mismatch between these images. Such an algorithm utilizes control
points within the contour of the images to provide a reference pathology for the pixel-by-pixel
evaluation of the segmentation results. The obtained image is referred to as the morphed pathol-
ogy image. Second, a segmentation algorithm, based on the EM technique, is implemented on the
THz image data to classify different tissue regions in the sample.*** The segmentation algorithm
utilizes the amplitude of the frequency domain representation of the reflected THz waveform
for each pixel, v, € R, where F is the number of frequency samples in the spectrum,
n=1{l1,...,N} is the index of the pixel of interest, and N corresponds to the total number
of pixels in the THz image. The THz information for each pixel is represented by a high-
dimension vector with F' = 106 frequency samples, which contains valuable information for the
region characterization of the tumor. On the other hand, the high dimension of the THz infor-
mation vector can negatively impact the model complexity of the segmentation process. Unlike
alternative studies that summarize the THz information per pixel into a single physical character-
istic, such as the absorption coefficient,* the proposed algorithm employs a dimension reduction
approach to identify the most relevant discriminating features while minimizing the loss of infor-
mation. Here, we utilize the low-dimensional ordered orthogonal projection (LOOP) algorithm,*
which empirically projects the high-dimension waveform per pixel into a lower-dimension sub-
space containing the most relevant features for the region segmentation of the THz image. The
details of the LOOP algorithm and the EM technique were reported in Refs. 29 and 36.

In addition to implementing the EM technique, we applied other classification methods such
as estimating the model parameters within the Gaussian mixture model (GMM) utilizing
a Markov chain Monte Carlo (MCMC) process. This procedure iteratively takes samples from
the posterior distributions of the mixture model parameters by employing a Gibbs sampling
technique.’” Two versions of the MCMC were tested on the data (not presented due to space
limitation); a one-dimensional (1D) MCMC'? and a higher dimensional MCMC with LOOP.*’
The first algorithm summarizes the THz waveform per pixel into a single feature, which cor-
responds to the spectral power and the peak of the normalized reflected signal for fresh and FFPE
tissue, respectively.'> While the second algorithm employs the LOOP dimension reduction tech-
nique to summarize the THz waveform per pixel into a lower dimension representation of the
data with at least two features. A previous study compared the segmentation results obtained
through EM and MCMC for the detection of breast cancer in THz imaging and concluded that
the EM algorithm presents the best overall segmentation performance among these approaches.”’
It is important to clarify that the samples presented in this paper were analyzed by considering
different dimension sizes within the LOOP algorithm, ranging from two to six dimensions. For
consistency, we present the EM results obtained through the dimension size that achieved the
best overall detection performance.

3 Experimental and Image Analysis Results

A total of nine tumors were obtained from 20 ENU induced Sprague Dawley rats, while the rest
did not produce any tumors in the expected period of 9 to 21 weeks and were sacrificed
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Fig. 3 Low-power microscopic images of 17 tumor sections obtained from nine rat tumors. (a) Rat
#1-section 1, (b) rat #1-section 2, (c) rat #2-section 1, (d) rat #2-section 2, (e) rat #3, (f) rat #4-
section 1, (g) rat #4-section 2, (h) rat #5-section 1, (i) rat #5-section 2, (j) rat #6-section 1, (k) rat
#6-section 2, () rat #7-section 1, (m) rat #7-section 2, (n) rat #8-section 1, (0) rat #8-section 2,
(p) rat #9-section 1, and (q) rat #9-section 2.

according to the protocol. The obtained tumors were bisected into two sections, as shown in
Fig. 2. The low power pathology images of 17 tumor sections obtained from the nine rat tumors
are shown in Fig. 3. The details of the low power pathology process of stitching are clarified in
Appendix A. The microscopic images of Figs. 3(a)-3(q) shows that the rat tumors exhibit cancer
tissues adjacent to pre-existing normal fibro-fatty tissue with healthy mammary ducts and
glands, mimicking the human breast tissue reported in Refs. 4, 18-21. The microscopic images
of Figs. 3(a), 3(b), 3(f), 3(g), 3(), 3(1), 3(m), and 3(o), exhibit muscle tissue adjacent to both
cancer and healthy fibro-fatty tissues. The muscle tissue is usually not present in human breast
cancer excision but could exist in animal model tumors due to the narrow space where the tumor
grows in the mammary pad.

Due to the space limitation, we present results for THz images and EM classifications for
only three cases of ENU- rat tumors— rat tumor #1-section 2, rat tumor #2-section 2, and rat
tumor #9-section 2.

3.1 THz Reflection Images

The THz reflection imaging of fresh and FFPE block tumor tissue is shown in Fig. 4. In addition,
data of two tumors obtained from our previous mice models'*!* are included in the figure for
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Fig. 4 THz reflection imaging results. (a)-(d) Rat tumor #1-section 2: (a) photograph of the fresh
tissue, (b) the low power pathology image, (c) the THz power spectra image of the fresh tissue,
(d) the THz time-domain peak reflection image of the FFPE block. (e)-(h) Rat tumor #2-section 2:
(e) photograph of the fresh tissue, (f) the low power pathology image, (g) the THz power spectra
image of the fresh tissue, (h) the THz time-domain peak reflection image of the FFPE block.
()—(1) Rat tumor #9-section 2: (i) photograph of the fresh tissue, (j) the low power pathology image,
(k) the THz power spectra image of the fresh tissue, (I) the THz time-domain peak reflection image
of the FFPE block. (m)—(p) Xenograft mouse tumor #9-section 2: (m) photograph of the fresh tis-
sue,' (n) the low power pathology image,'* (0) the THz power spectra image of the fresh tissue, '
and (p) the THz time-domain peak reflection image of the FFPE block.'* (q)—(t) Transgenic mouse
tumor #14 C: (q) photograph of the fresh tissue,® (r) the low power pathology image,'® (s) the THz
power spectra image of the fresh tissue,® and (t) the THz time-domain peak reflection image of
the FFPE block." (m)-(p) Reproduced with permission from the IEEE. (q)—(t) Reproduced with
permission from the IOP Publishing, Ltd.

comparison purposes. The first row of Fig. 4 shows the photographs of the fresh tissues starting
with rat tumor #1-section 2 in Fig. 4(a), rat tumor #2-section 2 in Fig. 4(e), rat tumor #9-section 2
in Fig. 4(i), xenograft mouse tumor #9-section 2'* in Fig. 4(m), and transgenic mouse tumor
#14 C'5 in Fig. 4(q). The thickness of fresh tissue specimen ranges from 5 to 8 mm in this work.
Specifically, the thickness is ~8 mm for rat tumor #1-section 2, ~5.9 mm for rat tumor #2-sec-
tion 2, ~5.5 mm for rat tumor #9-section 2, ~5 mm for xenograft mouse tumor # 9-section 2,
and ~5 mm for transgenic mouse tumor # 14 C. Following the same order, the results in the
second, third, and fourth rows of Fig. 4 show the low-power microscopic pathology images of
H&E stained slide (second row), THz power spectra images of the freshly excised tumors (third
row), and THz peak time reflection images of the FFPE block tumors (fourth row).

Upon visual inspection of the photographs of xenograft and transgenic mice sections in
Figs. 4(m) and 4(q), respectively, the differentiation between cancerous and non-cancerous
tissues can be clearly observed. Whereas it is not the case for the ENU-rat tumor photographs
in Figs. 4(a), 4(e), and 4(i). Here, we can see the advantageous role of utilizing the THz reflec-
tion imaging technology to highlight the contrast differentiation between cancerous and non-
cancerous tissue sections in the tumors, as shown in Fig. 4.

Journal of Medical Imaging 023504-7 Mar/Apr 2021 « Vol. 8(2)



Vohra et al.. Mammary tumors in Sprague Dawley rats induced. ..

The tumor of rat #1 was excised on the 63rd day after the chemical injection with a size of
~18-mm diameter. The microscopic low power image in Fig. 4(b) shows that this tumor exhibits
three tissue regions— cancer, fibro-fatty, and muscle. The light purple-colored spots seen in the
pathology image in Fig. 4(b) indicate a lack of cancer tissue on the slide (gaps) that is important
to mention as it will also be seen in the THz image in Fig. 4(d). These gaps could be either pre-
existing lumens, which were filled with some secretions when the tissue was fresh, or occurred
due to handling the tissue during the histopathology process. Figure 4(c) shows the THz imaging
of the fresh tumor obtained using the power spectra image using Eq. (1) demonstrating the excel-
lent distinction between cancer and the fibro-fatty regions of the tumor. Here, the cancer shows
higher reflections (red color) than the fibro-fatty (cyan and blue color). However, no distinction
could be observed between the cancer and the muscle regions. This is because the electrical
properties of fresh muscle tissue and fresh cancer tissues are similar, in agreement with our
previously reported work.!” In contrast to the fresh tissue THz image, the THz peak reflection
image in Fig. 4(d) shows a clear differentiation between all three regions, with cancer represent-
ing higher reflections (red color) followed by the muscle (light yellow) and fat (blue color).
Consistent with the pathology image in Fig. 4(b), the THz image in Fig. 4(d) shows blue color
spots inside the cancer region associated with the gaps/lumens filled with the paraffin.

The rat tumor #2 was excised on the 68th day from the chemical injection with a ~11.87-mm
tumor diameter. Based on the microscopic image in Fig. 4(f), this tumor includes two tissue
regions—cancer and fibro-fatty. Here, we also observe in Fig. 4(g) that the THz power spectra
image shows higher power spectra values for the cancer region (red color) compared with the
fibro-fatty region (blue and cyan color). In other words, a clear margin between cancer and fibro-
fatty tissue regions is seen in this image. This differentiation is also observed in the THz peak
reflection image of the FFPE block tumor in Fig. 4(h), with cancer demonstrating higher reflec-
tion magnitude (red color) than the fibro-fatty region (blue and cyan color). Furthermore, we
observe darker red color regions (higher reflection) in the cancer region in Figs. 4(c) and 4(g) that
could be due to higher density of cancer cells, insufficient drying of the tumor before placing it
on the polystyrene plate, or excess fluid secreted out of the tumor due to the pressure from the
polystyrene plate during the scanning process.

The third case presented here is for the rat tumor #9 shown in Figs. 4(i)—4(1). This tumor was
excised on the 120th day after the chemical injection with a tumor diameter equals to ~10.63 mm.
Like the second rat tumor, this tumor also exhibits cancer and fibro-fatty regions, as shown in the
microscopic image of Fig. 4(j). Consistent with the above cases, the THz power spectra image in
Fig. 4(k) and the peak reflection image in Fig. 4(1) demonstrate higher reflection values for the
cancer region (yellow-red color) in the tumor compared with the fibro-fatty region (blue and cyan
color). Upon comparing the THz image of the FFPE block tissue in Fig. 4(1) and the pathology
image in Fig. 4(j), we see an excellent qualitative correlation between both images. However, this
is not the case with the fresh tissue image. As discussed in our previous work,*> the histopathology
process introduced deformation in tissue shape leading to a change in the imaging surface.
Therefore, the correlation between the fresh tissue THz image and pathology image is degraded.

For comparison purposes between three animal breast tumor models, two tumors of different
animal models based on mice are included in Fig. 4. The first is the xenograft mice model
reported in Refs. 12-14, and the transgenic mice model reported in Ref. 15. These three breast
cancer animal models represent major differences in the tumor growth process, types of healthy
tissues enclosed in the tumor along with cancer, the heterogeneity of the tumor, and the amount
of healthy tissue at the tumor margin. As described in Sec. 2.1, the tumors in the Sprague Dawley
rats were induced by injecting ENU chemical in the rat’s mammary pad. Whereas the tumors in
C57BL/6 black laboratory xenograft mice were induced by injecting E0771 murine breast
adenocarcinoma cells in their mammary pad.'* In contrast to both these methods, the transgenic
model did not require any carcinogen injection to induce tumors in the mice’s body as it is a
genetically modified mice model that grows multifocal tumors spontaneously in the mam-
mary pad."

The data of the xenograft and transgenic tumors are shown in Figs. 4(m)—4(t). As observed
from the THz imaging point of view, we see a visual consistency in differentiation between
different tumor regions. For example, in the THz power spectra image of xenograft mouse tumor
#9 in Fig. 4(0o) and the transgenic mouse tumor #14 in Fig. 4(s), the cancer shows higher
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reflections (red color) compared with fat (blue color). Also, like rat tumor #1, the cancer and
muscle show similar reflection magnitudes in the fresh tissue images in Figs. 4(0) and 4(s). We
also observed consistent THz reflections from different regions in the FFPE block tissue images
in Figs. 4(p) and 4(t), for xenograft mouse and transgenic mouse tumors, respectively.
Furthermore, upon comparing the microscopic images of xenograft'* and transgenic' mice
tumors in Figs. 4(n) and 4(r), respectively, with the microscopic images of rat tumors in Fig. 3, it
can be seen that both mice tumor models lack the presence of pre-existing healthy fibrous tissue
in the excised tumors. Both mice tumor models exhibit only fat adjacent to cancer in the tumor.
Also, it can be seen that the amount of surrounding healthy tissue available in ENU-rat tumors is
more than that in the presented mice models. A numerical comparison between the percentage
cancerous pixels in each tumor in three animal models is shown in Table 1 and Fig. 5. The
percentage is achieved through generating binary masks of the tissue under test. The outer mask
of the FFPE block is obtained upon mapping the THz image with the pathology image, while the
fresh tissue mask was obtained through applying the gradient to the fresh tissue THz image. The
binary masks have values of one for the pixels on the tissue and zeros for the outside pixels.
Similarly, a second binary mask is generated for the cancerous region using the guidance of the
pathology image for the FFPE tumor and the gradient for the THz fresh tissue. The estimated
percentage of cancerous pixels is comparable among the tumors indicating to a general pres-
ervation of the surface between the fresh and fixed tissue specimens. Furthermore, despite the
very different procedures used to grow the tumors in these three animal models, the percentage of
cancerous pixels is consistent with the size of the excised tumors following the IACUC protocol.

3.2 THz Image Classification

The tumor classification results in Fig. 6 are achieved using the EM technique for all tumors
presented in Fig. 4. While the THz images of xenograft and transgenic mice tumors are published

Table 1 Summary of % cancerous pixels in each tumor in Fig. 4.

% of cancer pixels % of cancer pixels
Tumor type in fresh tumor in FFPE block tumor
Rat #1-section 2 56.61 50.7
Rat #2-section 2 73.22 65.99
Rat #9-section 2 46.12 54.33
Xenograft #9-section 214 62.70 68.71
Transgenic #14 C'S 43.09 45.81

80

mmmm Eresh tissues

u— FFPE bOCku
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% Cancerous pixels
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393
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Fig. 5 Percentage of cancerous pixels in each tumor THz image in Fig. 4.
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Fig. 6 Statistical classification. (a)—(d) Rat #1: (a) the morphed pathology for the fresh tissue, (b) the
3D EM detection model results for the fresh tissue, (c) the morphed pathology image for the FFPE
tissue block, and (d) the 4D EM detection model results for the FFPE block tissue. (e)-(h) Rat # 2:
(e) the morphed pathology for the fresh tissue, (f) the 2D EM detection model results for the fresh
tissue, (g) the morphed pathology image for the FFPE tissue block, and (h) the 4D EM detection
model results for the FFPE block tissue. (i)—(I) Rat #9: (i) the morphed pathology for the fresh tissue,
(j) the 2D EM detection model results for the fresh tissue, (k) the morphed pathology image for the
FFPE tissue block, and (l) the 4D EM detection model results for the FFPE block tissue.
(m)—(p) Xenograft mouse #9: (m) the morphed pathology for the fresh tissue, (n) the 2D EM detec-
tion model results for the fresh tissue, (0) the morphed pathology image for the FFPE tissue block,
and (p) the 3D EM detection model results for the FFPE block tissue. (q)—(t) Transgenic mouse
#14 C: (q) the morphed pathology for the fresh tissue, (r) the 2D EM detection model results for the
fresh tissue, (s) the morphed pathology image for the FFPE tissue block, and (t) the 2D EM detec-
tion model results for the FFPE block tissue.

in Refs. 14 and 15, the EM classification technique is implemented on these mice tumors here for
the first time for comparison purposes. The results are obtained from a binary classification
perspective as cancer versus non-cancerous regions, in which any non-cancerous regions in the
tumor are merged into a single region. Upon applying the EM segmentation algorithm to the data
in Fig. 4, we can obtain the probability that a pixel in the THz image belongs to cancer or non-
cancer region. For example, based on the calculation of the EM segmentation algorithm, a given
pixel within the THz image can present a 20% chance of belonging to cancer and 80% of belong-
ing to a non-cancerous region. The segmentation results shown in Fig. 6 were obtained by con-
sidering the maximum probability among these two regions, i.e., a threshold of 50% was utilized
for the label assignment of this process. For the binary representation of tumors in Fig. 6, cancer
pixels in each tumor are displayed as red color and the non-cancer pixels (fat, fibro, or muscle
tissues) as blue color.
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The statistical classification results of rat #1 are shown in Figs. 6(a)-6(d). The morphed
pathology images, constructed based on the pathology assessment, are obtained separately for
both fresh and FEPE tumors,'® as shown in Figs. 6(a) and 6(c), respectively. The EM model
results are shown in Figs. 6(b) and 6(d) for the fresh and FFPE tissue, respectively.
Although there is no tissue distortion among the pathology results and the THz image of the
FFPE tissue, the morphing algorithm is still applied to the FFPE tissue to correct the resolution
and alignment mismatch between these images. For this tumor, the fibro-fatty and muscle tissues
are grouped together and classified as non-cancer for the binary representation of the tissue clas-
sification results. The results in Fig. 6(b) show the classification of tissues in the fresh tumor
obtained by the 3D EM model. It can be observed here that the 3D EM segmentation model
presents a good visual correlation with respect to the morphed pathology results, where it iden-
tifies the cancerous area correctly with minimum non-cancer misclassification. The classification
image shown in Fig. 6(d) represents the FFPE block tumor segmentation results obtained using
the four-dimensional (4D) EM model. In this figure, we can observe that the 4D EM segmen-
tation results show some misclassification of the non-cancer region but overall shows a good
correlation with the microscopic image in Fig. 4(a).

The statistical classification results of rat tumor #2 are discussed in Figs. 6(e)-6(h). The
morphed pathology image of a fresh and FFPE tumor in Figs. 6(e) and 6(g) display cancer
and fibro-fatty tissue regions in the tumor as cancer and non-cancer, respectively. The two-
dimensional (2D) EM classification model results for fresh tumor THz data are shown in
Fig. 6(f). By visually inspecting Fig. 6(f), we can observe that the overall region classification
for the EM model shows a good correlation with the morphed pathology results with a very
minimum non-cancer misclassification around the edge of the cancer region. Furthermore, the
classification results obtained for the FFPE block tumor using the 4D EM model are shown in
Fig. 6(h). This figure shows that the model represents the correct classification of both cancer
and non-cancer regions with a small region of pixels in the non-cancer region classified as
cancer. These results are to be compared with the pathology and THz images of rat # 2 in Fig. 4.

The statistical classification results of the third tumor, rat tumor #9, are shown in Figs. 6(i)—
6(1). The morphed pathology images of fresh and FFPE tumors showing a binary representation
of tumor as cancer and non-cancer regions are shown in Figs. 6(i) and 6(k), respectively. By
visually inspecting the 2D EM classification results in Fig. 6(j), we can observe that most
of the cancer area located in the lower-left section of the tissue was correctly identified. In con-
trast, the upper-middle cancerous region within the tissue was mostly misclassified. For the
FFPE block tumor, the segmentation image obtained using the 4D EM model presented in
Fig. 6(1) represents the correct classification of both cancer and non-cancer regions. These results
are to be compared with the microscopic pathology and THz images of rat # 9 in Fig. 4.

The statistical classification results of the xenograft mouse tumor #9 are shown in Figs. 6(m)—
6(p). In the morphed pathology images of fresh and FFPE block tumor in Figs. 6(m) and 6(0),
respectively, the fat and muscle tissues are combined and displayed as non-cancer. From the
classification imaging results in Fig. 6(n), we can observe that the overall region classification
for the 2D EM model presents a good correlation with the morphed pathology results and correct
classification of muscle as a non-cancer region around the lower-middle edge of the cancer
region. The 3D EM model deployed for the FFPE block tumor provides the correct classification
of both cancer and non-cancer regions with some misclassification of cancer in the upper right
section of the tumor, as presented in Fig. 6(p).

Similarly, the classification results of the fifth tumor obtained from transgenic mouse #14 are
shown in Figs. 6(q)-6(t). In the morphed pathology images in Figs. 6(q) and 6(s) for fresh and
FFPE block tumors, respectively, the cancer and cancer in fat are grouped to be classified as
cancer, and fat and muscle tissues are grouped to be classified as non-cancer. The segmentation
results for the fresh transgenic tumor obtained using the 2D EM model in Fig. 6(r) show the
misclassification of the cancer area located in the center of the tumor. Similarly, in the 2D EM
classification results of FFPE tumor shown in Fig. 6(t), the non-cancer region in the upper-left
and lower-left region of the tumor is misclassified as cancer.

The segmentation process shown already is performed by considering the total number of
regions within the tissue, but the performance analysis presented here is evaluated in terms of the
detection of cancer alone using the receiver operating characteristic (ROC) curves. Ideally, the
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ROC curves achieve the optimum 100% true detection rate with 0% false detection rate.
Therefore, we compare the proposed classifiers’ performance by analyzing their proximity
to the optimal detection point within the curve. Additionally, we summarize the classifiers’ per-
formance by obtaining their areas under the ROC curve, which are then evaluated by considering
their proximity to the ideal case, i.e., 100%. A comparison of the ROC curves of cancer for the
rats, xenograft mouse, and transgenic mouse is summarized in Fig. 7 and Table 2. In Fig. 7, we
present the cancer ROC curves obtained using the statistical EM classification technique of the
five tumors shown in Fig. 4. The cancer ROC curves for fresh tissue samples are presented in
Fig. 7(a) and for the FFPE block tissue samples in Fig. 7(b).

As mentioned in Sec. 2, the tumor sections were also classified using the MCMC method,
and the areas under the cancer ROC curves are listed in Table 2. Upon comparing the MCMC
and EM results, it is clear that the EM technique provided the highest success rate in most of the

: Cancer ROC curves for fresh tissues Cancer ROC curves for FFPE tissues
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Fig. 7 ROC curves of cancer using the EM technique. (a) Fresh tissues and (b) FFPE tissues.

Table 2 Summary of areas under the cancer ROC curves for all samples.

Fresh tissue FFPE block tissue

Rat tumor #1 section 2

1D MCMC 6D MCMC 3D EM 1D MCMC 2D MCMC 4D EM

0.7787 0.8392 0.831 0.7551 0.9347 0.9636

Rat tumor #2 section 2
1D MCMC 2D MCMC 2D EM 1D MCMC 6D MCMC 4D EM

0.9591 0.9284 0.9645 0.9752 0.9949 0.9957

Rat tumor #9 section 2

1D MCMC 5D MCMC 2D EM 1D MCMC 5D MCMC 4D EM

0.7319 0.8356 0.8457 0.9312 0.9711 0.9812

Xenograft tumor #9 section 2
1D MCMC 2D MCMC 2D EM 1D MCMC 2D MCMC 3D EM

0.8647 0.8968 0.9068 0.8633 0.8827 0.8869

Transgenic tumor #14 C
1D MCMC 5D MCMC 2D EM 1D MCMC 3D MCMC 2D EM

0.624 0.6551 0.5782 0.5917 0.6878 0.6776
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cases. For example, the EM provided 96.45% for rat tumor #2, followed by the xenograft mouse
tumor #9 with 90.68%. The classifications of rat tumors #1 and #9 show similar performance
with ~84% area under the ROC curve. The performance of the classifier in the rat tumor #9 could
be degraded due to the distortion in the shape of the tumor after the histopathology process,
as discussed earlier. Furthermore, we observe that the transgenic mouse tumor #14 C does not
show good tissue classification due to the high heterogeneity and complexity observed in the
transgenic tumors, as reported in Ref. 15. As cancer invades the other tissue, it became difficult
for the classifier to distinguish between the different regions of the transgenic model. Similarly,
the EM classification of FFPE block tumors in Fig. 7(b) shows the best performance among the
rat tumors. The results of Table 2 show a success rate with more than 95% area under the ROC
curves for rat tumors, followed by xenograft mouse tumor #9 with 88.69%, and then the trans-
genic mouse tumor with 67.76%. The results of Table 2 are consistent with the classification
results of human breast cancer tumors reported in Ref. 29.

4 Conclusion and Future Work

The results obtained in this work highlighted the THz imaging reflection technique and the EM
classification algorithm of breast cancer in rats. Malignant mammary tumors were grown in
Sprague Dawley rats upon injection with the ENU.

Seventeen tumor sections were obtained from nine tumors once they reached the size of
~18 mm in diameter. The freshly excised tissue sections and their associated dehydrated
FFPE block tissues were scanned on the imaging system to produce the THz images. The fresh
tissue images were based on the reflected signal in the frequency domain using the power spectra
formulation, while the FFPE block tissue images were based on the peak of the time-domain
reflected signal at each pixel. The low-power microscopic images of the 17 rat tumor sections
were obtained using the high-power microscope, followed by applying the stitching procedure.
The obtained images demonstrate that the ENU-tumors induced in rats exhibit the presence of
cancer tissue adjacent to healthy fibro-fatty tissues such as human breast cancer tumors. This was
the motivation of this work as the previously investigated xenograft, and transgenic mice tumor
models did not exhibit such resemblance with human breast tumors.

Based on the results obtained in this work, we can conclude that the xenograft tumor model
represents the simplest tumor with only cancer and fat regions. The transgenic model represents
much more complex heterogeneous tumors with cancer invading the surrounding tissue and
expressing advanced-stage tumors. At the same time, the ENU-tumor rat model fits in between
the two mice models and closely mimics human breast tumors where healthy fibro-fatty tissues
are present adjacent to cancer tissues.

The obtained THz images showed significant differentiation between cancer and healthy
tissues in most tumors’ sections presented here. A few sections showed the presence of muscle
tissue in the tumor, which exhibits reflection signals like the cancer in the THz images shown in
Fig. 4. As a result, the presence of muscle tissue introduced some challenges in the EM clas-
sification; however, muscle tissue is not a concern in human breast tumors. While THz images of
the FFPE block tissue show a good correlation with the pathology image, the challenge remains
in the correlation between the THz image of fresh tissue and the pathology image. As reported in
previous work,*” there is usually a surface mismatch between the pathology and the fresh tissue
THz image, as can be clearly seen in rat tumor #9-section 2. The primary reason for this mis-
match is due to tissue deformation that occurs during the histopathology process. Almost
~100-pm thick tissue section is usually removed during the histopathology process to obtain
a flat surface cut for the H&E stained slide. The mismatch and deformation in the imaging
surface lead to a mismatch in the image between THz and pathology. Additionally, during the
histopathology process, the tissue sometimes gets unfold and laid down at the bottom surface of
the tumor. This also introduces ambiguity when correlating fresh tissue THz images with the
pathology image. This observation is consistent with our previous mice tumor models.'*!

THz imaging and classification results were obtained for the ENU-tumors in rats and the
mice models previously published, such as the xenograft'>'* and the MMTV PyMT trans-
genic."” The difference observed in the results between these animal models was based on
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various factors, like the tumor induction process, the presence of healthy breast tissue at the
tumor’s margin, the tissue types in the tumor, and the tissue response to the THz pulse. A small
amount of fibrous tissue was exhibited in transgenic mouse tumors, but that fibrous tissue was
cancer induced tissue and not pre-existing. The results also showed that the best classification
was achieved using the EM technique, except for the transgenic mouse tumor, consistent with the
classification of human breast cancer tumors reported in Ref. 29. Furthermore, the obtained
results showed that the EM classification of cancer in freshly excised tumors seems to be under-
predicted by showing more false negatives than false positives.

The future work focuses on implementing machine learning and deep learning algorithms on
THz imaging to perform better cancer classification and better assessment of tumor margins.
Machine learning, as known, requires establishing a large database of tumor tissues. The use
of ENU-tumor in rats has shown a potential to provide an adequate amount of data instead
of relying on human breast tumors. Furthermore, a spectroscopy procedure in the reflection
mode will be conducted to extract the refractive index and absorption coefficient of the xeno-
graft, transgenic, and rat tumor models and compare with human breast tumors.

5 Appendix A: Microscopic Imaging and Image Analysis

The analysis of each rat mammary tumor is performed via microscopic imaging of the H&E-
stained tissue slide [Fig. 8(a)]. The first step in this process is to construct the low-power micro-
scopic image of the tissue slide. This is achieved by taking ~10 to 15 subsection images of the
H&E slide at 6.7x magnification, as shown in Fig. 8(b). The size of each sub-image obtained at
6.7x magnification is 3.28 X 3.28 mm. The images are taken such that every two adjacent sub-
section images have a common region between them. These images are then uploaded in open-
source software (Hugin-Panorama Stitcher’®). To map the common regions among all images,
one image is taken as a reference image and is compared one on one with other images. For
example, in Fig. 8(c), image #1 is taken as a reference image, and it is further compared with all
other images. The common regions between the reference image and the other images are
marked as different colored boxes in Fig. 8(c). Every image is made a reference image, and
this mapping process is repeated for all images. Upon completion of the common region map-
ping process, the software then compiles the stitching of the images to provide the complete
pathology image of the tissue at 6.7X magnification, as shown in Fig. 8(d). To assess the tissue,
few regions on the low power image are selected, for which 100X magnification images are
obtained to have the cellular level information of the selected region. For example, at the regions
marked (1) and (2) in Fig. 8(d), the high-power images are presented in Fig. 8(e). The size of
each high-power image obtained at 100X magnification is 0.22 X 0.22 mm. Several such images
are taken that covers most of the tissue regions to be assessed.

Reference
image

RN
. (W

(b) (c)

Fig. 8 Stitching microscopic images of mammary tumor from rat # 1. (a) H&E-stained tissue slide
of rat tumor #1-section 2; (b) low-power microscopic images of the slide in (a) at 6.7x magnifi-
cation; (c) compiled image in the software after mapping of common points between all images
in (b); (d) stitched pathology image; and (e) high power images obtained at 100x magnification for
the tissue regions marked (1) and (2) in (d).

Journal of Medical Imaging 023504-14 Mar/Apr 2021 « Vol. 8(2)



Vohra et al.: Mammary tumors in Sprague Dawley rats induced. . .

Disclosures

The authors declare that they have no conflict of interest.

Acknowledgments

This work was funded by the National Institutes of Health Award No. R15CA208798. It was also
funded in part by the National Science Foundation (NSF) Award No. 1408007. Funding for the
pulsed THz system was obtained through NSF/MRI Award No. 1228958. We also acknowledge
the collaboration with Oklahoma Animal Disease Diagnostic Laboratory at the Oklahoma State
University for conducting the histopathology procedure on all the tissues handled in this work.
The authors also acknowledge the use of the Histopathology Lab in the Biomedical Engineering
Department at the University of Arkansas.

References

1. K. Okada et al., “Terahertz near-field microscopy of ductal carcinoma in situ (DCIS) of the
breast,” J. Phys.: Photonics 2(4), 044008 (2020).

2. Q. Sun et al., “Recent advances in terahertz technology for biomedical applications,” Quant.
Imaging Med. Surg. 7(3), 345-355 (2017).

3. A.J. Fitzgerald et al., “Classification of terahertz-pulsed imaging data from excised breast
tissue,” J. Biomed. Opt. 17(1), 016005 (2012).

4. T. Bowman et al., “Terahertz tomographic imaging of freshly excised human breast tissues,”
J. Med. Imaging 6(2), 023501 (2019).

5. B. S. Peter et al., “Development and testing of a single frequency terahertz imaging system
for breast cancer detection,” IEEE J. Biomed. Health Inf. 17(4), 785-797 (2013).

6. S. Yamaguchi et al., “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,”
Sci. Rep. 6(1), 30124 (2016).

7. H. Zuhayri et al., “Study of wound healing by terahertz spectroscopy,” Proc. SPIE 11582,
115821E (2020).

8. S. Sy et al., “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,”
Phys. Med. Biol. 55(24), 7587-7596 (2010).

9. Y. C. Sim et al., “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed.
Opt. Express 4(8), 1413-1421 (2013).

10. F. Wahaia et al., “Detection of colon cancer by terahertz techniques,” J. Mol. Struct. 1006(1),
77-82 (2011).

11. H. Chen et al., “High-sensitivity in vivo THz transmission imaging of early human breast
cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22),21552-21562 (2011).

12. T. Bowman et al., “Pulsed terahertz imaging of breast cancer in freshly excised murine
tumors,” J. Biomed. Opt. 23(2), 026004 (2018).

13. T. Chavez et al., “Assessment of terahertz imaging for excised breast cancer tumors with
image morphing,” J. Infrared Millimeter Terahertz Waves 39(12), 1283—1302 (2018).

14. T. Chavez et al., “Cancer classification of freshly excised murine tumors with ordered
orthogonal projection,” in Proc. 2019 IEEE Int. Symp. Antennas and Propag. and
USNC-URSI Radio Sci. Meeting, Atlanta, Georgia, pp. 525-526 (2019).

15. N. Vohra et al., “Pulsed terahertz reflection imaging of tumors in a spontaneous model of
breast cancer,” Biomed. Phys. Eng. Express 4(6), 065025 (2018).

16. C.T. Guy, R. D. Cardiff, and W. J. Muller, “Induction of mammary tumors by expression of
polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease,” Mol.
Cell. Biol. 12(3), 954-961 (1992).

17. E. Y. Lin et al., “Progression to malignancy in the polyoma middle T oncoprotein mouse
breast cancer model provides a reliable model for human diseases,” Am. J. Pathol. 163(5),
2113-2126 (2003).

18. T. C. Bowman, M. El-Shenawee, and L.K. Campbell. “Terahertz imaging of excised breast
tumor tissue on paraffin sections.,” IEEE Trans. Antennas Propag. 63(5), 2088-2097 (2015).

Journal of Medical Imaging 023504-15 Mar/Apr 2021 « Vol. 8(2)


https://doi.org/10.1088/2515-7647/abbcda
https://doi.org/10.21037/qims.2017.06.02
https://doi.org/10.21037/qims.2017.06.02
https://doi.org/10.1117/1.JBO.17.1.016005
https://doi.org/10.1117/1.JMI.6.2.023501
https://doi.org/10.1109/JBHI.2013.2267351
https://doi.org/10.1038/srep30124
https://doi.org/10.1117/12.2581009
https://doi.org/10.1088/0031-9155/55/24/013
https://doi.org/10.1364/BOE.4.001413
https://doi.org/10.1364/BOE.4.001413
https://doi.org/10.1016/j.molstruc.2011.05.049
https://doi.org/10.1364/OE.19.021552
https://doi.org/10.1117/1.JBO.23.2.026004
https://doi.org/10.1007/s10762-018-0529-8
https://doi.org/10.1109/APUSNCURSINRSM.2019.8888653
https://doi.org/10.1109/APUSNCURSINRSM.2019.8888653
https://doi.org/10.1088/2057-1976/aae699
https://doi.org/10.1128/MCB.12.3.954
https://doi.org/10.1128/MCB.12.3.954
https://doi.org/10.1016/S0002-9440(10)63568-7
https://doi.org/10.1109/TAP.2015.2406893

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Vohra et al.. Mammary tumors in Sprague Dawley rats induced. ..

T. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz transmission vs reflection
imaging and model-based characterization for excised breast carcinomas,” Biomed. Opt.
Express 1(9), 37563783 (2016).

T. Bowman et al., “Terahertz imaging of three-dimensional dehydrated breast cancer
tumors,” J. Infrared Millimeter Terahertz Waves 38(6), 766786 (2017).

N. Vohra et al., “Terahertz imaging and characterization protocol for freshly excised breast
cancer tumors,” J. Vis. Exp. 158, e61007 (2020).

K. Almbholt et al., “Extracellular proteolysis in transgenic mouse models of breast cancer,”
J. Mammary Gland Biol. Neoplasia 12(1), 83-97 (2007).

G. Stoica, A. Koestner, and C. Capen, “Neoplasms induced with high single doses of
N-ethyl-N-nitrosourea in 30-day-old Sprague-Dawley rats, with special emphasis on mam-
mary neoplasia,” Anticancer Res. 4(1-2), 5-12 (1984).

P. Swann and P. Magee, “Nitrosamine-induced carcinogenesis. The alkylation of N-7 of
guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl
methanesulphonate,” Biochem. J. 125(3), 841-847 (1971).

G. Stoica, A. Koestner, and C. Capen, “Characterization of N-ethyl-N-nitrosourea—induced
mammary tumors in the rat,” Am. J. Pathol. 110(2), 161 (1983).

K. Turetschek et al., “Tumor microvascular characterization using ultrasmall superparamag-
netic iron oxide particles (USPIO) in an experimental breast cancer model,” J. Magn. Reson.
Imaging 13(6), 882-888 (2001).

W. Li et al., “Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-
mutated alleles,” Mutation Res./Fundam. Mol. Mech. Mutagenesis 772, 55-62 (2015).
A. Nazmeen and S. Maiti, “Oxidant stress induction and signalling in xenografted (human
breast cancer-tissues) plus estradiol treated or N-ethyl-N-nitrosourea treated female rats via
altered estrogen sulfotransferase (fSULT1E1) expressions and SOD1/catalase regulations,”
Mol. Boil. Rep. 45(6), 2571-2584 (2018).

T. Chavez et al., “Breast cancer detection with low-dimensional ordered orthogonal projec-
tion in terahertz imaging,” IEEE Trans. Terahertz Sci. Technol. 10(2), 176—189 (2020).
A. P. Salinger and M. J. Justice, “Mouse mutagenesis using N-ethyl-N-nitrosourea (ENU),”
CSH Protoc. 3(4) (2008).

S. Fan et al., “Gelatin embedding: a novel way to preserve biological samples for terahertz
imaging and spectroscopy,” Phys. Med. Biol. 60(7), 2703-2713 (2015).

M. El-Shenawee et al., “Cancer detection in excised breast tumors using terahertz imaging
and spectroscopy,” Biomed. Spectrosc. Imaging 8(1-2), 1-9 (2019).

S. Ragothaman et al., “Unsupervised segmentation of cervical cell images using Gaussian
mixture model,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit. Workshops,
pp. 70-75 (2016).

J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, Springer
Series in Statistics, Vol. 1, Springer, New York (2001).

F. Wahaia et al., “Terahertz spectroscopy and imaging for gastric cancer diagnosis,” J.
Spectral Imaging 9(1), a2 (2020).

S. Guha and A. R. Lamichhane, “Document classification after dimension reduction through
a modified Gram-Schmidt process,” in Wireless Networks and Computational Intelligence,
K. R. Venugopal and L. M. Patnaik, Eds., pp. 236243, Springer, Berlin (2012).

X. Zhang, J. Bolton, and P. Gader, “A new learning method for continuous hidden Markov
models for subsurface landmine detection in ground penetrating radar,” /IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 7(3), 813-819 (2014).

P. d’Angelo, “Hugin — Panorama photo stitcher,” http://hugin.sourceforge.net/ (accessed
7-1-2017).

Nagma Vohra received her BTech degree in electronics and communication engineering from
Guru Nanak Dev University, Amritsar, India, in 2014, and the MTech degree in communications
engineering from the Vellore Institute of Technology, Vellore, India, in 2017. She is currently
pursuing her PhD in electrical engineering at the University of Arkansas, Fayetteville, Arkansas.
Her dissertation focuses on the electromagnetic characterization of biological and non-biological
materials at microwave, millimeter-wave, and terahertz frequencies.

Journal of Medical Imaging 023504-16 Mar/Apr 2021 « Vol. 8(2)


https://doi.org/10.1364/BOE.7.003756
https://doi.org/10.1364/BOE.7.003756
https://doi.org/10.1007/s10762-017-0377-y
https://doi.org/10.3791/61007
https://doi.org/10.1007/s10911-007-9040-x
https://doi.org/10.1042/bj1250841
https://doi.org/10.1002/jmri.1126
https://doi.org/10.1002/jmri.1126
https://doi.org/10.1016/j.mrfmmm.2015.01.002
https://doi.org/10.1007/s11033-018-4425-z
https://doi.org/10.1109/TTHZ.2019.2962116
https://doi.org/10.1101/pdb.prot4985
https://doi.org/10.1088/0031-9155/60/7/2703
https://doi.org/10.3233/BSI-190187
https://doi.org/10.1109/CVPRW.2016.173
https://doi.org/10.1255/jsi.2020.a2
https://doi.org/10.1255/jsi.2020.a2
https://doi.org/10.1109/JSTARS.2014.2305981
https://doi.org/10.1109/JSTARS.2014.2305981
http://hugin.sourceforge.net/
http://hugin.sourceforge.net/
http://hugin.sourceforge.net/

Vohra et al.: Mammary tumors in Sprague Dawley rats induced. . .

Tanny Chavez received her BS degree in electronics and telecommunications engineering in
2015 from Escuela Superior Politecnica de Litoral, Guayaquil, Ecuador, and her MS degree in
electrical engineering in 2018 from the University of Arkansas, Fayetteville, Arkansas. She is
currently completing her doctoral studies in electrical engineering at the University of Arkansas.
Her dissertation focuses on the development of statistical and machine learning segmentation
algorithms for the detection of breast cancer in terahertz imaging.

Joel R. Troncoso is a graduate student in the Department of Biomedical Engineering at the
University of Arkansas, Fayetteville. His research interests include diffuse optical spectroscopy
and hyperspectral microscopy, tumor response to therapy, and finding functional markers in
breast tumors to differentiate between indolent and aggressive disease.

Narasimhan Rajaram is an associate professor of biomedical engineering at the University of
Arkansas, Fayetteville. He received his PhD in biomedical engineering from the University of
Texas at Austin and completed postdoctoral training at Duke University. His research is focused
on the development of functional and molecular optical imaging strategies that can survey the
tumor microenvironment and determine early response to therapy as well as long-term clinical
outcome in terms of tumor recurrence and metastasis.

Jingxian Wu received his MS (EE) degree from Tsinghua University, Beijing, China, in 2001,
and the PhD (EE) from the University of Missouri at Columbia, Missouri, in 2005. He is
currently a professor with the Department of Electrical Engineering, University of Arkansas,
Fayetteville. His research interests mainly focus on signal processing for large-scale networks
and wireless communications, cybersecurity for smart grids, and statistical data analytics.

Patricia N. Coan received her DVM from Auburn University. She went into small animal prac-
tice. She received her PhD in pathology and completed a residency in laboratory animal medi-
cine from the University of Alabama at Birmingham (UAB). She completed her certification in
the American College of Laboratory Animal Medicine. Dr. Coan worked in laboratory animal
medicine at UAB, Tulane University, and the University of Tennessee before moving to the
Oklahoma State University in 2017.

Todd A. Jackson is the director of the Animal Resource Program and a research professor in the
Department of Veterinary and Biomedical Sciences at the Pennsylvania State University,
University Park, Pennsylvania. He received his veterinary degree from Purdue University and
completed a postdoctoral fellowship in comparative medicine at the University of Michigan
Medical School. He is a board-certified specialist in laboratory animal medicine.

Keith Bailey is a comparative pathologist at the University of Illinois College of Veterinary
Medicine with more than 20 years’ experience investigating natural and experimental disease
conditions in animals and humans. His expertise includes leveraging new technologies as diag-
nostic tools in animal models, particularly in the therapeutic area of oncology.

Magda El-Shenawee received her PhD in electrical engineering from the University of
Nebraska, Lincoln. She is currently a professor of electrical engineering with the University
of Arkansas in Fayetteville. Her research interests include terahertz imaging and spectroscopy,
breast cancer detection, material characterization in the microwave, millimeter-wave, and tera-
hertz frequency bands, computational inverse scattering algorithms, MEMS antennas, nano-
antennas for energy enhancement of photovoltaic solar cells, and biopotentials modeling of
breast tumor cancerous cells.

Journal of Medical Imaging 023504-17 Mar/Apr 2021 « Vol. 8(2)



