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Abstract

Purpose: We used computerized image analysis and machine learning approaches to character-
ize spatial arrangement features of the immune response from digitized autopsied H&E tissue
images of the lung in coronavirus disease 2019 (COVID-19) patients. Additionally, we applied
our approach to tease out potential morphometric differences from autopsies of patients who
succumbed to COVID-19 versus H1N1.

Approach: H&E lung whole slide images from autopsy specimens of nine COVID-19 and two
H1N1 patients were computationally interrogated. 606 image patches (∼55 per patient) of 1024 ×
882 pixels were extracted from the 11 autopsied patient studies. Awatershed-based segmentation
approach in conjunction with a machine learning classifier was employed to identify two types of
nuclei families: lymphocytes and non-lymphocytes (i.e., other nucleated cells such as pneumo-
cytes, macrophages, and neutrophils). Based off the proximity of the individual nuclei, clusters for
each nuclei family were constructed. For each of the resulting clusters, a series of quantitative
measurements relating to architecture and density of nuclei clusters were calculated. A receiver
operating characteristics-based feature selection method, violin plots, and the t-distributed
stochastic neighbor embedding algorithm were employed to study differences in immune patterns.

Results: In COVID-19, the immune response consistently showed multiple small-size lympho-
cyte clusters, suggesting that lymphocyte response is rather modest, possibly due to lympho-
cytopenia. In H1N1, we found larger lymphocyte clusters that were proximal to large clusters
of non-lymphocytes, a possible reflection of increased prevalence of macrophages and other
immune cells.

Conclusion: Our study shows the potential of computational pathology to uncover immune
response features that may not be obvious by routine histopathology visual inspection.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coro-
navirus-2 (SARS-CoV-2). SARS-CoV-2 is absorbed by the mucosae of the respiratory tract and
targets bronchial cells and pneumocytes. Once SARS-CoV-2 is internalized into the host cell,
it is sensed by receptors especially present in native cells and macrophages, a subtype of immune
cell.1,2 The binding of viral particles to their receptors leads to a pro-inflammatory response by
the infected cells. The innate immune response is the immediate mechanism of defense by the
immune system and is led by neutrophils and macrophages, which release molecules (cytokines)
that act locally to stop the aggressor as well as attract lymphocytes responsible for viral recog-
nition and regulation of the immune cell response.2,3 This phase, led by both T and B lympho-
cytes, is known as the adaptive immune response.4

In lung tissue from severely ill COVID-19 patients, some cytokines are overexpressed4

(cytokine storm), which is thought to result in severe collateral damage in the affected tissues,
driving organ failure.2 This cell network between immune and surrounding cells has been
morphologically explored previously, mainly in routine histopathology postmortem tissue from
people who have died on account of COVID-19.5–13 Additionally, the most common immune
cell response consists of a predominance of interstitial T-lymphocytes.14 In contrast, B cells are
consistently few while neutrophils and macrophages are heterogeneously reported.14

H1N1 is a viral disease that is still causing thousands of deaths.15 Previous works15–17 have
highlighted the importance of comparing the differences between COVID-19 and H1N1 since
they share common etiologies and similar clinical symptoms, occur in the same season, and were
considered pandemics in recent times. Given the novelty of COVID-19 and the non-
specific nature of clinical presentation of both diseases, there is a need for better understanding
how these diseases impact the immune system.

When comparing COVID-19 with H1N1, it has been found that subjects with COVID-19
present (1) higher median age of onset; (2) more prevalence of symptoms such as non-productive
cough, fatigue, and gastrointestinal disturbances; (3) more ground-glass opacities in radiology
images; (4) worse response to some oxygen therapies; and (5) wider spectrum of pharmaco-
therapy with different responses.15 A possible reason for these could be on account of the differ-
entially expressed immune response between H1N1 and SARS-CoV-2.15,18,19 In the lung, the
spectrum of histopathological findings in COVID-19 includes diffuse alveolar damage, fibrin
microthrombi, desquamative pneumocytes, and superposed changes of bronchopneumonia; all
of them accompanied by T lymphocytic infiltration, in mild to moderate degree. In H1N1, addi-
tional findings such as necrosis of main airways, extensive hemorrhage,20 superimposed acute
bronchopneumonia, and a considerable amount of interstitial macrophages accompanying
lymphocytic infiltration21,22 have been more consistently found. However, none of these studies
used objective metrics for comparing differences in architectural patterns of the immune
response in both diseases using pathology slides.

Although visual assessment of hematoxylin–eosin (H&E)-stained tissues and immunohisto-
chemistry of autopsied specimens in both COVID-19 and H1N114,23 provide a gestalt interpre-
tation, it involves some degree of subjectivity and does not yield quantitative measurements.
Computational pathology, image analysis, and machine learning approaches have been previ-
ously employed for quantitative characterization of the immune response in digitized H&E tissue
pathology images of diseases such as breast and lung cancer.24–27

In this preliminary work, we introduce a new computational imaging framework to character-
ize the disease microenvironment from H&E whole slide images (WSIs) of postmortem lung
tissue belonging to nine patients who succumbed to COVID-19. First, image processing and
machine learning were employed to automatically identify two nuclei types in each image tile:
“lymphocytes” and “non-lymphocytes.” Although non-lymphocytes in lung tissue include pneu-
mocytes, macrophages, neutrophils, among other nucleated cells, in this study, these individual
cell types were not differentiated but treated as corresponding to a single family. Then nuclei
clusters for both types were built based on the proximity of the individual nuclei. In addition,
we present a new set of quantitative metrics that capture the density and spatial interplay between
clusters of the same and different nuclei types. Unlike the previous work employing nuclei-
graph methods,28 this approach takes into account inter- and intraprimitive relationships
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(i.e., relationships between nuclei types of the same or of different families), thereby enabling the
exploration of complex cellular interactions within the microenvironment. Although, in this
work, we showcase the utility of this approach in characterizing the interplay and spatial relation-
ships between two different nuclei types (i.e., lymphocytes and non-lymphocytes), the approach
can be extended to other nuclei types and also to a larger number of nuclei families (i.e., >2).
Additionally, we apply this approach to characterize the architectural nuclei arrangement found
in two patients who died due to H1N1 and identify a set of image features relating to the immune
morphology that were most different between H1N1 and COVID-19 patients.

2 Materials and Methods

2.1 Dataset

The dataset consisted of WSIs from 11 patients who died either due to H1N1 (N ¼ 2) or
COVID-19 (N ¼ 9). These were obtained from the National Institutes of Health (NIH)
COVID-19 Digital Pathology Repository29 (Nh1n1 ¼ 1 and Ncovid ¼ 6), Cleveland Clinic (CC)
(Nh1n1 ¼ 1), the Oklahoma Office of the Chief Medical Examiner (OCME) (Ncovid ¼ 1), and
University Hospitals (UH) (Ncovid ¼ 2). All cases were anonymized. The NIH slides were
digitized at 20× while the others were digitized at 40× magnification. CC and UH slides were
digitized using a Ventana iScan HT scanner; OCME slides using an Aperio AT Turbo.

Due to the different magnification levels of the images, the CC, OCME, and UH images were
downsampled to 20× to make them comparable to the NIH images. From this dataset, 606
1024 × 882-pixel patches (∼55∕patient) were randomly extracted (patches with ≥70% back-
ground were discarded). Random extraction of patches has been used in the previous studies
aiming to model the heterogeneity of the lesion. For example, Khan and Yuan30 developed
a “virtual biopsy approach,” in which non-overlapping tumor regions were randomly sampled
to characterize the degree of lymphocytic infiltration in breast cancer samples.

For the NIH cases, as we were unable to download the WSIs, screenshots of the WSIs were
directly taken from the web browser using Microsoft Windows’ native screenshot function.
Although extracting screenshots may sound unorthodox, it is worth mentioning that the NIH
repository employs the HALO Link web microscope, which offers a high quality of visualiza-
tion. Image quality was not altered by taking screenshots since the tissue structures were pre-
served adequately. In fact, the screenshots were shown to our pathology collaborators, and they
confirmed they were equally valid as the patches directly obtained from image files correspond-
ing to tissue slides digitized at 20× magnification.

2.2 Automatic Identification of Lymphocytes

For automatic identification of lymphocytes (Fig. 1), image color normalization31 was applied to
compensate staining variations of slides acquired from different institutions [Fig. 1(c)]. Next, the
method of Veta et al.,32 which has been used by previous works,26,33,34 was used for segmenting
all image nuclei [Fig. 1(d)]. This method is a watershed-based model specifically tuned for nuclei
segmentation of H&E images. In an independent testing set containing 18 histopathology cases,
it showed a sensitivity of 0.85 and mean predictive value of 0.89.32

Finally, the model by Corredor et al.35 was employed to classify each nucleus as either
“lymphocyte” or “non-lymphocyte.” This model consists in a support vector machine with linear
kernel that employs image-derived features of each segmented nucleus related to texture, shape,
and color (Fig. 1, bottom row). Authors of the method report that in an independent testing
set containing 1026 lung nuclei (manually annotated and validated by an expert pathologist),
it yielded a precision of 0.89 and recall of 0.83.35

2.3 Characterizing the Spatial Architecture of Lymphocytes and
Surrounding Nucleated Cells

Once lymphocytes and non-lymphocytes were automatically identified, different clusters for
each family were built based on the distance between nuclei. First, lymphocytes were connected
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with each other if the distance between them is below a predefined threshold. Avery large thresh-
old value generates just a single complete graph, which limits analyzing interactions within
the disease microenvironment; whereas a small value (close to zero) produces multiple
sparse graphs, which approximates to analyze individual nuclei. For this reason, in this study,
the value of the threshold was empirically determined to be 50 pixels (∼12.5 μm) because it
showed reasonable trade-off in the number of generated graphs. This action was carried out
for each lymphocyte until all lymphocytes have been visited and potentially connected with
corresponding proximal lymphocytes. This results in n disconnected subgraphs of lymphocytes
[Fig. 2(b)]. The same process is carried out for non-lymphocytes, thereby generating m discon-
nected subgraphs of non-lymphocytes. Then a set P of polygons is constructed and defined by
P ¼ fPL

1 ; P
L
2 ; : : : ; P

L
n ; PNL

1 ; PNL
2 ; : : : PNL

m g, where PL
i is the convex hull36 that contains all the

nuclei of the i’th lymphocyte subgraph and PLN
j is the convex hull of the j’th non-lymphocyte

subgraph [Fig. 2(c)]; each polygon represents a cluster. The convex hull has been used previ-
ously to model the area of influence, for example, the spatial extent of epidemics at the outbreak
stage.37,38 Given the dynamics of the disease microenvironment, in this work, the convex hull
concept was employed to model the area of influence of nuclei, taking into account their move-
ments within the tissue, the associated cytoplasm, and connecting stroma.

Based on the built clusters, six groups of features were derived.

1. Number of clusters of each nuclei type. Nf represents the number of clusters of the f’th
nuclei type, where f ∈ f1; 2; : : : ; Fg, where F is the total number of families (F ≥ 2).

2. Density of each cluster. dk ¼ nk∕Ak, where dk is the density of the k’th cluster, nk is the
number of nodes constituting the cluster k, and Ak is the area of cluster k, i.e., the total
number of pixels covered by the convex hull C of the cluster nodes.

3. Intersection between clusters. Ai ∩ Aj,
Ai∩Aj

Ai
, Ai∩Aj

Aj
, Ai∩Aj

ðAiþAjÞ∕2, where Ai ∩ Aj is the inter-
section between clusters i and j, Ai is the area of cluster i, and Aj is the area of cluster j
[see Fig. 3(a)].

4. Diversity of clusters surrounding a specific cluster. Sf;k∕Nk, where Sf;k represents the
numbers of clusters of nuclei type f surrounding the k-i’th cluster (f ∈ f1; : : : ; Fg) and
Sk represents the total number of clusters surrounding cluster k. This measure is applied
for a predefined number of neighbors [see Fig. 3(b)].

5. Measures from global graphs built for each nuclei type. A complete and undirected
graph G ¼ ðO;E;WÞ was defined for each nuclei type, where O ¼ fo1; : : : ; oFg is
the set of nodes corresponding to the convex hull centroids of each nuclei type,
E ¼ fe1; e2; : : : ; emg is the set of edges connecting such centroids such that

Fig. 1 Procedure for automatic detection of lymphocytes. Top row: (a) AWSI; (b) an enlarged field
of view extracted from the WSI; (c) field of view after applying normalization of color; (d) automatic
segmentation of nuclei; and (e) detection of lymphocytes. Bottom row: For each segmented
nucleus, a set of features related to texture, color, and shape are extracted. Then a previously
trained classifier (a support vector machine) uses such features to label each nucleus as either
a lymphocyte or a non-lymphocyte.
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fðoi; ojÞ ∈ E∶ ∀ oi; oj ∈ O; i; j ∈ f1; : : : ; Fg; i ≠ jg, andW ¼ fw1; w2; : : : ; wmg is a set
of weights proportional to the length of each e ∈ E. To extract information about the
arrangement of cluster centroids of a nuclei type, subgraphs representing the Voronoi
diagram GV , Delaunay triangulation GD [Fig. 3(c)], and MST GMST were constructed.
From such subgraphs, different features are computed, such as area, perimeter, and chord
length of Voronoi polygons, area and side length of Delaunay triangles, edge length of
MST, among others.

6. Compactness of cluster centroids of each nuclei type. Given the graph G previously

defined, we computed the compactness of centroids as ci ¼
PNf−1

j¼1
1

Di;j
� bθ, where ci

is the compactness measure of the i’th node, Nf is the number of nodes of nuclei type

Fig. 3 Computation of some representative features: (a) intersecting area between clusters;
(b) cluster neighborhood diversity; (c) Delaunay graph built for a specific nuclei type; and (d) node
compactness for a specific nuclei type. The color bar represents the grouping measurement,
in which H stands for nodes highly grouped, i.e., very close to multiple nodes, while L stands for
sparsely clustered nodes, i.e., isolated or far from other nodes.

Fig. 2 Construction of nuclei clusters: (a) identification of two families of nuclei (blue: lymphocytes
and green: non-lymphocytes); (b) linking of nuclei based on proximity; and (c) resulting nuclei
clusters after drawing the convex hull that contains all the linked nuclei. Bottom cell of (b) illustrates
three nuclei α, β, and γ. Since the distance between α and β (d1) is less than the threshold θ, they
are linked. On the contrary, the distance between α and γ (d2) is larger than θ, so they are not
connected. As a result, they belong to different clusters. The nuclei that are not linked to other
nuclei cannot conform clusters, so they are not considered for the analysis.
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f, Di;j is the Euclidean distance between nodes i and j, θ is a threshold value, and bθ is a
binary value that is 0 when Di;j > θ and 1 otherwise [see Fig. 3(d)].

For characterizing each patch, a set of statistics (total, mean, standard deviation, median,
minimum, maximum, skewness, and kurtosis) were computed for each feature.

2.4 Statistical and Visual Analysis

Violin and split violin plots were used to visualize the distribution of the spatial immune archi-
tecture features and the probability distributions associated with these features.

The t-distributed stochastic neighbor embedding (t-SNE) algorithm was used for embedding
the features extracted from the spatial architecture of clusters for visualization in a two-
dimensional space. This algorithm has been previously used for visualization in different
studies related to single-cell transcriptomics,39 human genetic data,40 single nucleotide polymor-
phisms,41 and among others.

Additionally, an algorithm that maximizes the area under the receiver operating character-
istics (ROC) curve was used to find the most relevant/discriminating features.42 Finally, spatial
heat maps were built to illustrate the magnitude change of a specific feature across the patches of
WSIs from COVID-19 and H1N1 patients.

3 Results

3.1 Experiment 1: Analyzing Spatial Patterns of Immune Response in
COVID-19

Figure 4 presents the resulting t-SNE plot for all the patches of COVID-19 patients. No obvious
grouping of patient patches was observed, suggesting that spatial architecture features are
sparsely distributed and there is not a drastic difference from one patient to another.

Fig. 4 Unsupervised clustering of spatial architectural features of immune clusters of image
patches from COVID-19 patients. Each point represents a patch and each color represents
a different patient. This plot was generated using the t-SNE algorithm that started out with 350
features and reduced the dimensionality to 2 for facilitating visualization.
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Some lymphocyte-related features such as the area and density of lymphocyte clusters, inter-
section between clusters of lymphocytes non-lymphocytes, graph-based measures, and compact-
ness of clusters were also analyzed using violin plots (Fig. 5). The median area of clusters of
lymphocytes is around 3000 pixels (∼0.33% of the patch area), indicating that clusters of
lymphocytes are generally small [Fig. 5(a)]. Similarly, the median intersected area between
clusters of lymphocytes and non-lymphocytes was ∼2500 pixels (∼83% of the median area of
lymphocyte clusters), suggesting that a considerable area of the lymphocyte clusters was
overlapping with non-lymphocyte clusters [Fig. 5(c)]. Finally, graph-based and compactness
measures [Figs. 5(d)–5(f)] revealed that lymphocyte clusters tend to be circumscribed by other
lymphocyte clusters.

Fig. 5 Violin plots comparing the variation of some lymphocyte-related features across different
COVID-19 patients (N ¼ 9). For the sake of visualization, some extreme outliers were removed
from subfigures (a)–(c). The dashed line indicates the mean value over all nine patients.
(a) Median area (pixels) of lymphocyte clusters per patch; (b) median density of lymphocyte
clusters per patch; (c) median inters. area b/w clusters of lymp. and non-lymp.; (d) side length
min/max (Delaunay triang.) of lymp. clust.; (e) skewness of compactness of lymphocyte clusters;
and (f) triangle area min/max (Delaunay) of lymphocyte clusters.
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3.2 Experiment 2: Comparing Patterns of Immune Response in
COVID-19 and H1N1

A ROC-based feature selection algorithm42 was employed to find the 10 most discriminating
features. The Wilcoxon test was employed to determine whether differences with respect to the
top features were statistically significant. This process was also carried out for four features
related to lymphocytes, namely quantity of lymphocytes, area of lymphocyte clusters, and com-
pactness of cluster centroids. Since multiple comparisons were made at the patch level and there
were many features per patient, the p values corresponding to a comparison of image patches
between COVID-19 versus H1N1 were adjusted using the Benjamini-Hochberg procedure using
a false discovery rate (FDR) of 10% (Table 1). As all the assessed p values were smaller than
the critical value, they were considered significant.

Figure 6 illustrates the top four most discriminating features, which are related to overlap
between clusters of lymphocytes and non-lymphocytes. Although interpretation of these features
is subtle, they indicate that very large sized clusters of non-lymphocytes are more frequently
found in H1N1 compared to COVID-19. Figure 7 illustrates the four lymphocyte-related features
analyzed. We can deduce that in COVID-19 there are more clusters of lymphocytes, of smaller
size, that are closer to each other (high compactness) compared to H1N1, lymphocyte clusters
tending to be fewer and larger.

Figure 8 shows spatial heat maps illustrating the variation of the number of non-lymphocytes
per patch across 2 WSIs, one for a patient who died of COVID-19 (OCME) and another of H1N1
(CC). The density of non-lymphocytes per patch is higher for H1N1.

Finally, t-SNE was run to evaluate whether spatial-architecture-related features were able to
separate H1N1 and COVID-19 patches. Figure 9(a) shows no evident clusters across the differ-
ent sites, suggesting that data are similarly distributed. Figure 9(b) presents the distribution of
patches according to diagnosis, exhibiting an area with a high concentration (top middle) of
H1N1 points and a subtle grouping of H1N1 points (left). This could imply that some architec-
tural patterns are more commonly found in H1N1 than in COVID-19. When looking at the archi-
tectural patterns of the studied nuclei families, in general, lymphocyte clusters are larger in

Table 1 Benjamin-Hochberg procedure using a FDR of 10% for the top discriminating features
(as dictated by an ROC-based feature selection algorithm) and four lymphocyte-related features
(quantity of lymphocytes, area of lymphocyte clusters, and compactness of cluster centroids).

Variable p value Rank Adjusted p value using FDR approach

Top feat 1 2.12 × 10−25 1 0.0071

Top feat 2 7.24 × 10−19 2 0.0143

Top feat 5 2.65 × 10−18 3 0.0214

Top feat 6 2.94 × 10−18 4 0.0286

Top feat 3 4.58 × 10−16 5 0.0357

Top feat 4 6.27 × 10−16 6 0.0429

Top feat 7 4.48 × 10−15 7 0.0500

Top feat 9 6.16 × 10−15 8 0.0571

Top feat 10 2.19 × 10−14 9 0.0643

Top feat 8 1.82 × 10−13 10 0.0714

Lymp feat 4 1.84 × 10−5 11 0.0786

Lymp feat 3 5.02 × 10−5 12 0.0857

Lymp feat 2 1.44 × 10−4 13 0.0929

Lymp feat 1 2.22 × 10−4 14 0.1000
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H1N1. Similarly, non-lymphocytes are more numerous and compact, tending to generate larger
clusters than COVID-19 (Fig. 9, red/yellow-border patches).

4 Discussion and Conclusion

COVID-19 causes a wide spectrum of signs and symptoms.43,44 In severely ill cases, some
authors mentioned an exuberant cytokine production along with an intrinsic viral capacity to
limit the innate immune response, which causes severe organ damage and perpetuates viral
replication.1,2,19,45–48 Previous works have employed peripheral blood for describing the immune
behavior in COVID-19 patients. The most common findings include low counts of total number
of T lymphocytes and their CD4 subtype.15,46,49–51 These lymphocyte counts have been even
proposed as predictors of outcome.49–51

In tissue, visual pathologic assessment of lymphocytes in autopsied samples of patients who
have died of COVID-19 has been reported. This estimation of lymphocytes is, however, time-
consuming26,52 and has been subjectively estimated as: low-versus-medium, mild-versus-mod-
erate, or patchy-versus-diffuse accompanying changes such as diffuse alveolar damage, acute
bronchopneumonia, and microthrombi.6,7,10,12,53 No comparison of immune cell response among
different stages in lung tissue of COVID-19 or other viral diseases has been performed to date.

To our knowledge, this is the first study in: (1) describing quantitatively immune nuclei
patterns in lung tissue from patients who died of COVID-19 and (2) exploring the differences
in the morphologic immune architecture of patients who succumbed to COVID-19 and H1N1,
a comparable viral infection whose clinical spectrum, laboratory test results, pharmacotherapy,
and prevention strategies have been extensively explored.15,54

Fig. 6 Split violin plots comparing the variation of the 4 top discriminating features in patches of
COVID-19 (9 patients, 496 patches) and H1N1 (2 patients, 110 patches). These features are
related to the intersection of clusters of lymphocytes and non-lymphocytes and are defined as
follows. (a) AF1∩AF2

AF2 , where AF1 is the area of a convex hull containing the centroids of all the
lymphocyte clusters and AF2 is the area of a convex hull containing the centroids of all the
non-lymphocyte clusters. (b) Total 2 � A1∩A2

A1þA2, where A1 is the area of clusters of lymphocytes and

A2 is the area of clusters of non-lymphocytes. (c) 2 � AF1∩AF2
AF1þAF2. (d) AF1 ∩ AF2.
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Using an ROC-based feature selection method, violin plots, and t-SNE on patches of
COVID-19 and H1N1, we found that spatial arrangement of lymphocytes per tile was different
in both diseases (Figs. 5, 6, and 9). In COVID-19, we found three important patterns:
(1) multiple smaller-sized lymphocyte clusters, (2) immune clusters typically surrounded by

Fig. 8 Spatial heat maps illustrating the number of non-lymphocytes per patch and representative
patches of a patient who died of COVID-19 and another who died of H1N1. H stands for a high
number of non-lymphocytes and L for low. The patches in the bottom row show a hot spot for each
disease (i.e., containing a high number of non-lymphocytes), revealing that in H1N1 there is a
higher density of non-lymphocyte nuclei (green dots) compared to COVID-19.

Fig. 7 Split violin plots comparing the variation of lymphocyte-related features in patches of
COVID-19 (9 patients, 496 patches) and H1N1 (2 patients, 110 patches) patients. (a) Median
compactness of lymphocyte clusters per patch; (b) number of clusters of lymphocytes per patch;
(c) number of lymphocytes per patch; and (d) max area of lymphocyte clusters per patch.
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other lymphocyte clusters, and (3) regions encompassed by the lymphocyte clusters typically
overlapping with other non-lymphocyte clusters. These patterns appear to suggest that the
lymphocyte response in patients who died of COVID-19 is relatively modest. A possible explan-
ation for this phenomenon is the widely reported lymphocytopenia;49–51 however, a more focused
study needs to be performed to assess any correlation between lymphocytic infiltration in lungs
and lymphocyte levels in the blood.

In H1N1 patients, by contrast, we noticed (1) fewer and larger clusters of lymphocytes and
(2) significant presence of few but extremely large clusters of non-lymphocytes. This appears to be
concordant with previous findings reporting a considerable quantity of macrophages accompany-
ing the lymphocytic infiltration in H1N1, as well as a higher prevalence of acute immune cell
infiltration.21,22 By contrast, fewer neutrophils have been found in COVID-19 cases given the
potential of the N protein (found in SARS-CoV-2) to block IFN-1 production, a cytokine involved
in neutrophil attraction.45,55 This imbalanced proportion of immune cells in solid tissues such as the
lung is a potential explanation for the differences we found when comparing lymphocyte spatial
distribution and their interaction with other nuclei in COVID-19 versus H1N1 patients.

In fatal cases of COVID-19, the inability of lymphocytes to limit viral damage despite pos-
sibly being extremely activated could be a consequence of abnormal lymphocyte–lymphocyte
or lymphocyte–non-lymphocyte crosstalk, concordant with a prior hypothesis by Tan et al.51

In contrast, in H1N1, the response of non-lymphocytes appears to be flourishing, possibly
reflecting either better coordination between lymphocytes and their surrounding nuclei, or a key
role of superimposed acute inflammation.

We acknowledge the limitations of this work. Quantitative differences in a small number of
cases might not hold up when larger numbers of cases are studied; however, it is worth mention-
ing that studies involving autopsies usually draw conclusions from fewer cases. Calabrese et al.56

presented a work summarizing the pathological findings described in 23 articles reporting
autopsies in suspected/known COVID-19 patients, evidencing that the median number of cases
per study is 2 patients. Of course, as more cases are published, a more comprehensive analysis of
the spatial architecture of the immune response for COVID-19 and H1N1 could be performed.
Some studies6 have employed immunohistochemistry and have been able to analyze the

Fig. 9 Unsupervised clustering of spatial architectural features of immune clusters of COVID-19
and H1N1 patches using t-SNE and illustration of representative patches. (a) Each point repre-
sents an image patch, and each color corresponds to a different institution. The t-SNE algorithm
started out with 350 features and reduced these to 2. (b) The same clustering but in this case each
point represents a patch and each color a disease (i.e., either H1N1 or COVID-19). The red-border
patches correspond to H1N1 and exhibit large clusters of non-lymphocytes (green border), which
suggest that these nuclei are numerous and compact. The yellow-border patches correspond to
COVID-19 and present as smaller groups of non-lymphocytes.
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importance of subfamilies of lymphocytes (e.g., CD4 or CD8); however, in those works, the
spatial architecture of such families was not analyzed. Our findings using standard H&E samples
suggest that spatial relationships between immune and non-immune nuclei could play a role in
characterizing these diseases. Identification of subgroups of lymphocytes or other immune nuclei
could meaningfully enrich a similar work in the future. Future work may also benefit from
including an extensive comparison against effective immune response as well as with normal
lymphoid tissue associated to airway mucosa. Additionally, a comprehensive analysis of the
implications of the threshold value employed to build nuclei clusters for characterizing both
diseases could meaningfully enrich this work in the future.

In summary, we used a computational-pathology-based image analysis approach to charac-
terize the immune nuclei architecture in digitized autopsied H&E lung samples from patients
who died of COVID-19 and H1N1. As far as we know, this is the first attempt to quantitatively
capture morphology for characterizing lymphocytic infiltrates and their relationship to surround-
ing nuclei in COVID-19 and simultaneously compare this arrangement in H1N1. In this pre-
liminary study, we found that the immune response in COVID-19 consistently showed multiple
lymphocyte clusters of small size, suggesting that the lymphocyte response is rather modest,
possibly due to lymphocytopenia. In contrast, in H1N1, we found larger lymphocyte clusters
accompanied by large clusters of non-lymphocytes, a possible reflection of increased prevalence
of macrophages, and other immune cells. In combination with cytokine profiling57 and after
testing this algorithm in a larger population, our approach could potentially help enrich and
inform understanding in the process of developing therapeutic involving immune response
modulation in COVID-19 patients.
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