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Abstract. Source mask optimization (SMO) is a leading resolution enhancement technique in immersion lithog-
raphy at the 45-nm node and beyond. Current SMO approaches, however, fix the numerical aperture (NA), which
has a strong impact on the depth of focus (DOF). A higher NA could realize a higher resolution but reduce the
DOF; it is very important to balance the requirements of NA between resolution and the DOF. In addition, current
SMO methods usually result in complicated source and mask patterns that are expensive or difficult to fabricate.
This paper proposes a parametric source-mask-NA co-optimization (SMNO) method to improve the pattern
fidelity, extend the DOF, and reduce the complexity of the source and mask. An analytic cost function is first
composed based on an integrative vector imaging model, in which a differentiable function is applied to formulate
the source and mask patterns. Then, the derivative of the cost function is deduced and a gradient-based algo-
rithm is used to solve the SMNO problem. Simulation results show that the proposed SMNO can achieve the
optimum combination of parametric source, mask, and NA to maintain high pattern fidelity within a large DOF. In
addition, the complexities of the source and mask are effectively reduced after optimization. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JMM.13.4.043013]
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1 Introduction
Optimization techniques play an important role in the
improvement of the pattern fidelity and depth of focus
(DOF) of current optical lithography systems. Source opti-
mization is mainly aimed at altering the source shape,1,2

whereas mask optimization is aimed at modulating the
amplitude of the electric field to compensate for the optical
proximity effect.3,4 In 2002, Rosenbluth et al. proposed the
first source mask optimization (SMO) method that exploits
the synergy between the source and mask to achieve a higher
resolution.5 Since then, a number of SMO methods have
been proposed in the literature.6–9 Most methods are based
on a scalar imaging model that is no longer accurate for
a numerical aperture ðNAÞ > 0.6.10 In high-NA immersion
lithography systems, the vector nature of the electromagnetic
field must be taken into account. Recently, we proposed a
pixelated SMO based on a vector imaging model that signifi-
cantly improved the simulation precision for lithography at
the 45-nm node and beyond.11,12

Previous SMO methods fixed the NA and fell short in
considering the mutual impact of the NAwith respect to the
source and mask. Prior work has demonstrated that a larger
NA could realize a higher resolution, but the DOF would
decrease because of the relation DOF ¼ k2 · λ∕ðNAÞ2,13
where λ is the wavelength and k2 is the process factor.
Hence, it is highly important to pursue the optimal NA dur-
ing the SMO procedure so as to realize the designated res-
olution and achieve high image fidelity within a larger DOF.
In addition, current pixelated SMO methods dramatically
increase the complexity and fabrication cost of the optimized

source and mask patterns; thus, they suffer from an inherent
disadvantage in manufacturing.14,15

To overcome these limitations, this paper proposes a para-
metric source-mask-NA co-optimization (SMNO) method to
improve the pattern fidelity within a large DOF and the com-
plexity of the source and mask patterns. To our knowledge,
this paper is the first to solve for the parametric SMNO
problem based on a vector imaging model. First, the vector
imaging model described in Refs. 11 and 16 is used to for-
mulate the SMNO framework, which significantly improves
the simulation precision for the 45-nm node in immersion
lithography. Then, an analytic model of the parametric
source, mask, and NA is built. Since the derivative of the
arch function exists, it is used to approximate the parametric
source pattern, phase-shifting mask (PSM) pattern, and NA
values such that the gradient-based algorithm can be applied
to the SMNO problem. In particular, the source is modeled
by its partial coherent factor and opening angle. The mask is
represented by the main feature and the serif. During the
SMNO process, all parameters are simultaneously optimized
by using the steepest-descent algorithm. In order to validate
the proposed SMNO algorithm, simulations based on a
quasar source and a two-dimensional mask are presented
as an example. The simulations show that, in comparison
with the SMO method, the proposed SMNO method can
achieve the optimal combination of source, mask, and NA
to achieve superior imaging performance over a wider
DOF. In addition, the parametric source can maintain an
extremely simplistic distribution to avoid customizing the
diffractive optical elements or installing an expensive pixel
source generator. The parametric mask greatly reduces the
complexity, which is beneficial for mask fabrication and
lowers the cost.*Address all correspondence to: Yanqiu Li, E-mail: liyanqiu@bit.edu.cn
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The remainder of the paper is organized as follows.
Section 2 briefly summarizes the vector imaging model
used in this paper. The analytic and parametric source,
mask, and NA are modeled in Sec. 3. The SMNO algorithm
is proposed and described at length in Sec. 4. The simula-
tions are provided in Sec. 5. Finally, conclusions are
drawn in Sec. 6.

2 Vector Imaging Model for Immersion Lithography
In this paper, we choose the vector imaging model described
in Refs. 11 and 16 as the basis for developing the SMNO
framework. This vector imaging model can provide accurate
simulation results even when NA > 1 in immersion lithog-
raphy. The accuracy of the model has been proven by com-
parison with PROLITH.11

In the following part, we use ðx; yÞ and ðf; gÞ to represent
the coordinate systems in the spatial and frequency domains.
ðα; β; γÞ is the direction cosine of the light propagating
through ðf; gÞ. The direction cosines on the source side,
mask side, and image side are denoted as ðαs; βs; γsÞ,
ðα; β; γÞ, and ðαi; βi; γiÞ, respectively.

A schematic of the lithography imaging process is illus-
trated in Fig. 1. A source point Sðαs; βsÞ in the source
plane emits the polarized light Ein ¼ ½Ex;Ey� propagating in

the direction k̂ and incident on the mask Mðx; yÞ, where k̂ ¼
ðαs; βs; γsÞ is the direction cosine with γs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2s − β2s

p
.

The electric field on the exit pupil Eext can be expressed as

Eextðαi; βiÞ ¼ QNAðαi; βiÞ · Cðαi; βiÞ · Ψðαi; βiÞ
· FfMðx; yÞg · Ein · eiδ; (1)

where δ is the defocus factor representing the actual focal
plane’s deviation from the best focus position. Ff g is the
Fourier transform. Ψðαi; βiÞ is a 3 × 2 transfer matrix.
Cðαi; βiÞ ¼

ffiffiffiffiffiffiffiffiffi
γ∕γi

p
is the radiometric correction factor.

QNAðαi; βiÞ is the pupil function that denotes the diffrac-
tion-limited effect in an optical system; it can be formulated
as a circle function.

QNAðαi; βiÞ ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i þ β2i

p
≤ NA

ni
0; otherwise

; (2)

where ni is the refractive index of the immersion medium on
the image side.

The electric field at the image plane can be written as

Eimðxi; yi; ziÞ ¼
2π

ni · R
· F−1fEextðαi; βiÞg; (3)

where R is the reduction factor of the projection lens and
F−1f g is the inverse Fourier transform.

The complete aerial image intensity Iim of the partial
coherent source S can be obtained by

Iimðxi; yi; ziÞ ¼
ZZ

Sðαs; βsÞ · ½Eimðxi; yi; ziÞ

· E�
imðxi; yi; ziÞ�dαsdβs: (4)

In order to obtain unit intensity in the aerial image,17 the
normalized aerial image intensity IAI can be written as

IAIðxi; yi; ziÞ ¼
Iimðxi; yi; ziÞ
Iclearðxi; yi; ziÞ

; (5)

where Iclearðxi; yi; ziÞ is the image intensity of the mask
Mclear in which all entries equal 1. Iclear can be calculated
by the same procedure as Iim.

The aerial image represents the distribution on the wafer
plane of the optical intensity that will cause the exposure of
the resist. Usually, the exposure dose is described by the
aerial image threshold value rt in a constant threshold resist
model.18 The resist can be developed when the aerial image
intensity IAI is larger than rt. For numerical consideration,
we employ a sigmoid function instead of a hard threshold
to calculate the resist image.19 Then, the exposure resist
image Z can be expressed as

Z ¼ 1

exp½−aðIAI − rtÞ� þ 1
; (6)

where a dictates the steepness of the sigmoid function.

3 Analytic Model of the Parametric Source,
Mask, and NA

In the aerial image equation, the source, mask, and NA are
all binarized and have been formulated using a rectangular
function. We often avoid using the rectangular function in
optimization because it is not differentiable. In this section,
we use a differentiable function instead of the rectangular
function to describe the source, mask, and NA as the use
of a differentiable function is more convenient for optimiza-
tion in inverse lithography. Let us introduce the name “arch
function” for the following rational approximation of a rec-
tangular function:

archðxÞ ¼ 1

ðxÞ2b þ 1
; (7)

where b is the steepness. As shown in Fig. 2, the arch func-
tion is approximately equivalent to the rectangular function
when b is sufficiently large.Fig. 1 Illustration of an optical lithography system.
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3.1 Source Model

Let Sðαs; βsÞ ∈ RNs×Ns denote the source with all entries
equal to 0 or 1, where NS is the dimension of the source.
The parametric source can be described by a partial coherent
factor, such as the outer sigma σout, the sigma width σwidth,
and the opening angle θ. For annular illumination, the source
shape is described by the rectangular function.

SAðαs; βs; σout; σwidthÞ ¼
�
1; ðσout − σwidthÞ ≤ rs ≤ σout
0; otherwise

;

(8)

where rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2s þ β2s

p
.

In order to calculate the derivative of the source param-
eter, the source can be modeled by a two-dimensional arch
function. The annular illumination SA can be formulated as

SAðαs; βs; σout; σwidthÞ ¼
1

ðrs∕σoutÞ2bs þ 1

−
1

½rs∕ðσout − σwidthÞ�2bs þ 1
; (9)

where SAðαs; βs; σout; σwidthÞ ∈ ½0;1�. The steepness is repre-
sented by bs.

For quasar illumination, the source is also restricted by
the opening angle θ. The quasar illumination SQ can be
modeled by the product of SA and a radial function KR.

SQðαs; βs; σout; σwidth; θ1; θ2Þ
¼ KRðαs; βs; θ1; θ2Þ · SAðαs; βs; σout; σwidthÞ; (10)

where KRðαs; βs; θ1; θ2Þ ∈ ½0;1� is also a differentiable arch
function, and

KRðαs; βs; θ1; θ2Þ ¼ 1 −
1�

2·180π ·a cos
αs
rs
−180

180−θ1

�
2bs þ 1

þ 1�
2·180π ·a cos

αs
rs
−180

θ2

�
2bs þ 1

; (11)

where θ1 and θ2 represent the opening angles of the vertical
and the horizontal poles, respectively. Figure 3 shows the
quasar source with bs ¼ 10 and bs ¼ 40. The root mean
square errors between the approximate source and the
binary source are 3.4 and 0.41%, respectively. We know
that the source shape approximates to the binarized distribu-
tion when bs is large enough.

3.2 Mask Model

Let Mðx; yÞ ∈ RN×N be the mask with all entries equal to
tm · expðiφmÞ, where N is the dimension of the mask, and
tm and φm are the feature transmittance and phase shift of
the attenuated PSM (AttPSM), respectively. For a 6%
AttPSM, tm ¼ ffiffiffiffiffiffiffiffiffi

0.06
p

and φm ¼ π in the phase-shift region,
whereas tm ¼ 1 and φm ¼ 0 in the non-phase-shift region.

The parametric mask is composed of the main feature and
the serif, where the serif is placed at the corner of the main
feature. The main feature is controlled by the feature width
and feature height, while the serif is modeled by the serif size
and the serif offset. The serif offset is the distance that
the serif deviates from the main feature. The schematic of
the parametric mask is shown in Fig. 4.

For the binary mask with all entries equal to 0 or 1, the
l’th main feature can be expressed by using the arch function.

ml
Fðx; y;ml

w;ml
hÞ ¼ 1 −

1h
2ðx−xl

0
Þ

ml
w

i
2bm þ 1

·
1h

2ðy−yl
0
Þ

ml
h

i
2bm þ 1

;

(12)

where ml
F ∈ ½0;1�, bm is the steepness, ml

w and ml
h are the

width and height of the feature, and xl0 and yl0 represent
the center position of the feature.

The j’th serif can be expressed as

mj
Sðx; y;mj

ss; m
j
soÞ

¼ 1 −
1h

2ðx−xj
0
−mj

soÞ
mj

ss

i
2bm þ 1

·
1h

2ðy−yj
0
−mj

soÞ
mj

ss

i
2bm þ 1

; (13)

Fig. 2 Approximation of the rectangular function by using a derivative
arch function. The arch function is approximate to the rectangular
function when b is large enough.

Fig. 3 Modeling of parametric quasar source. The source shape
approximates to the binarized distribution when bs ¼ 40.

Fig. 4 Modeling of the parametric mask. The mask is composed of
the main feature and the serif.
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where mj
S ∈ ½0;1�, mj

ss and mj
so are the serif size and serif

offset, and xj0 and yj0 represent the center position of the
serif.

The function of the whole binary mask m0 can then be
derived from the summation of the main feature and the
serif.

m0ðx;y;mw;mh;mss;msoÞ

¼
Xl

χ¼1

mχ
Fðx;y;mχ

w;m
χ
hÞþ

Xj

ζ¼1

mζ
Sðx;y;mζ

ss;m
ζ
soÞ− l− jþ 1;

(14)

where m0 ∈ ½0;1�, and m0 describes the distribution of
the mask.

Because the mask distribution is binarized, we convert
m0 into binary when simulating the aerial and resist image.

m 0
0 ¼

�
1; m0 > 0.5

0; m0 ≤ 0.5
: (15)

It is noted that we use m0 in the process of calculating
the derivative of the main feature and serif parameters,
and use m 0

0 instead of m0 when performing the aerial and
resist image simulation.

The AttPSM can be modeled by the product of the attenu-
ated layer Mattðm0Þ and the phase shift layer Φðm0Þ.
Mðx; y;mw;mh;mss; msoÞ ¼ Mattðm0Þ · Φðm0Þ; (16)

where Mattðm0Þ ¼ ½ð1 − tmÞ · m0 þ tm� and Φðm0Þ ¼
exp½iπ · ð1 −m0Þ�.

Thus, each independent main feature Ml
F and serif Mj

S of
the AttPSM can be written as

Ml
Fðx; y;ml

w;ml
hÞ ¼Mattðml

FÞ ·Φðml
FÞ

¼ ½ð1− tmÞ ·ml
F þ tm� · exp½iπ · ð1−ml

FÞ�;
(17)

Mj
Sðx; y;mj

ss;m
j
soÞ ¼Mattðmj

SÞ ·Φðmj
SÞ

¼ ½ð1− tmÞ ·mj
S þ tm� · exp½iπ · ð1−mj

SÞ�:
(18)

3.3 NA Model

NA can also be modeled by the differentiable arch function
to replace the circle function of Eq. (2). Then, QNAðαi; βiÞ
can be written as

QNAðαi; βiÞ ¼
1� ffiffiffiffiffiffiffiffiffiffi

α2iþβ2i
p

NA

�
2bna þ 1

; (19)

where bna is the steepness.
Just as with the binarization process of the mask in

Eq. (15), NA should also be binarized asQ 0
NA while perform-

ing the aerial and resist image simulation.

Q 0
NA ¼

�
1; QNA > 0.5

0; QNA ≤ 0.5
: (20)

QNA in Eq. (19) is only used to calculate the derivative
of NA.

4 SMNO Based on the Vector Imaging Model

4.1 Cost Function

Given a binary target pattern Z̄ ∈ RN×N with all entries equal
to 0 or 1, the pattern error (PE) F 0

Z can be expressed as the
difference between Z̄ and the resist image Z.

F 0
Z ¼ kZ − Z̄k22 ¼

XN2

τ¼1

ðzτ − z̄τÞ2; (21)

where k k22 is the square of the Euler distance between the
two arguments and τ is the τ’th grid of the resist image
Z. The PE can explicitly describe the pattern fidelity,
which is a very important parameter when evaluating the
lithography performance.

In order to improve the convergence of the optimization,
we add the difference between the aerial image IAI and the
target pattern Z̄ in the cost function.

F 0
AI ¼ kIAI − c · Z̄k22 ¼

XN2

τ¼1

ðIAI;τ − c · z̄τÞ2; (22)

where c is a constant to modify the amplitude of the target
pattern. When the DOF is sufficiently large, the aerial image
IAI will be as close to the target pattern Z̄ as possible.

Thus, we combine Eqs. (21) and (22) to form the cost
function.

F ¼ ωg · F 0
Z þ ð1 − ωgÞ · F 0

AI; (23)

where ωg ∈ ½0;1� is the weight of F 0
Z.

In order to maintain high pattern fidelity over a large
range of DOF, the final cost function D should be adjusted
by adding the off-focus term. Thus,

D ¼ ωfoc · Ffoc þ ð1 − ωfocÞ · Fdefoc; (24)

where Ffoc and Fdefoc are the cost functions at the focal and
defocus planes, and ωfoc ∈ ½0;1� is the weight parameter.

4.2 SMNO Algorithm

The SMNO algorithm can be formulated as the search for the
optimal source, mask, and NA to minimize the cost function
D, such that

fS;M;QNAg ¼ min D: (25)

In order to find the best combination of the source, mask,
and NA, the steepest-descent method is used to implement
the proposed SMNO algorithm. Then, the k’th iterative
parameter set fPngðkÞ, which includes all parameters of
the source, mask, and NA, can be calculated by

fPngðkÞ ¼ fPngðk−1Þ þ Λ · dðk−1Þ; (26)
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where P represents the parameters of the source, mask, and
NA. Λ is a vector that represents the step length of the param-
eters. The step length should be assigned before the optimi-
zation for each individual parameter P. The steepest-descent
direction is denoted by d, which can be derived by

d ¼ −∇DðfPngÞ: (27)

The partial derivative of the cost function D with respect
to each parameter P of the source, mask, and NA can be
written as

∂D
∂P

¼ ωfoc ·
∂Ffoc

∂P
þ ð1þ ωfocÞ ·

∂Fdefoc

∂P
: (28)

Then, for the derivative of the cost function F at the focal
and defocus positions,

∂F
∂P

¼ ωg ·
∂F 0

Z

∂P
þ ð1 − ωgÞ ·

∂F 0
AI

∂P
; (29)

where

∂F 0
Z

∂P
¼

XN2

τ¼1

�
2

�
1

exp½−aðIAI − rtÞ� þ 1
− z̄m

�

·
−1

fexp½−aðIAI − rtÞ� þ 1g2

· exp½−aðIAI − rtÞ� · ð−aÞ ·
∂IAI
∂P

�
; (30)

∂F 0
AI

∂P
¼

XN2

τ¼1

�
2ðIAI;τ − c · z̄τÞ ·

∂IAI
∂P

�
: (31)

From Eqs. (28)–(31), we find that ∂D∕∂P can be derived
once ∂IAI∕∂P is calculated. Therefore,

∂D
∂P

¼ ∂D
∂IAI

·
∂IAI
∂P

: (32)

It is noted that all the parameters of source, mask, and NA
are constrained by boundaries in lithography. In order to
reduce the bound-constrained optimization problem to an
unconstrained optimization problem, we adopt the following
parametric transformation to convert P into Ω.

Ω ¼ −1
bp

· ln

�
Pmax − Pmin

P − Pmin

− 1

�
; (33)

where Ω is a function of parameter P, bp is a constant, and
Pmax and Pmin are the maximum and minimum values of
the parameter P, respectively. P ∈ ½Pmax; Pmin� and Ω ∈
ð−∞;∞Þ. The parameter P can be given by

P ¼ Pmax − Pmin

expð−bp · ΩÞ þ 1
þ Pmin: (34)

Then, the derivative of the cost function D with respect to
the parameter P can be converted to the derivative of D with
respect to Ω.

∂D
∂Ω

¼ ∂D
∂P

·
∂P
∂Ω

; (35)

where

∂P
∂Ω

¼ bp · ðPmax − PminÞ · expð−bp · ΩÞ
½expð−bp · ΩÞ þ 1�2 : (36)

Therefore, the derivative ∂IAI∕∂P can also be calculated
by ∂IAI∕∂Ω. In the following part, we will calculate the deriv-
atives of the parameters of the source, mask, and NA.

4.2.1 Derivative of the source parameter

The derivative of the cost function D with respect to the
source parameter ΩðsvÞ is
∂D

∂ΩðsvÞ
¼ ∂D

∂IAI
·

∂IAI
∂ΩðsvÞ

; (37)

where sv represents the source parameters σout, σwidth, θ1, and
θ2. The term ∂IAI∕∂ΩðsvÞ can be derived from Eq. (5).

∂IAI
∂ΩðsvÞ

¼ Iclear · ∂Iim∕∂ΩðsvÞ − Iim · ∂Iclear∕∂ΩðsvÞ
ðIclearÞ2

: (38)

We use I 0im to represent Iim and Iclear; then, ∂I 0im∕∂ΩðsvÞ
can be derived from Eq. (4).

∂I 0im
∂ΩðsvÞ

¼
ZZ

∂S
∂ΩðsvÞ

· ½Eðxi; yi; ziÞ · E�ðxi; yi; ziÞ�dαsdβs;
(39)

where E represents the electric field of the mask M and the
mask Mclear. For quasar illumination, the source S is defined
by SQ as in Eq. (10). The derivatives of ∂SQ∕∂ΩðsvÞ are rep-
resented in Appendix A. By combining Eqs. (37) and (39),
we can obtain the derivatives ∂D∕∂ΩðσoutÞ, ∂D∕∂ΩðσwidthÞ,
∂D∕∂Ωðθ1Þ, and ∂D∕∂Ωðθ2Þ accordingly.

4.2.2 Derivative of the mask parameter

The derivative of the cost function D with respect to the
mask parameter ΩðmzÞ is

∂D
∂ΩðmzÞ

¼ ∂D
∂IAI

·
∂IAI

∂ΩðmzÞ
; (40)

where mz represents the mask parameters mw, mh, mss, and
mso in Eq. (16). The term ∂IAI∕∂ΩðmzÞ can be derived from
Eq. (5).

∂IAI
∂ΩðmzÞ

¼ ∂Iim∕∂ΩðmzÞ
Iclear

; (41)

where

∂Iim
∂ΩðmzÞ

¼
ZZ

Sðαs; βsÞ

·

�
∂Eim

∂ΩðmzÞ
· E�

im þ Eim ·
∂E�

im

∂ΩðmzÞ
�
dαsdβs: (42)
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For Eim and its complex conjugate E�
im,

∂E�
im

∂ΩðmzÞ
¼

�
∂Eim

∂ΩðmzÞ
��
; (43)

where

∂Eim

∂ΩðmzÞ
¼ 2π

ni · R
· F−1

�
QNAðαi; βiÞ · Cðαi; βiÞ · Ψðαi; βiÞ

· F

�
∂M

∂ΩðmzÞ
�

· Ein · eiδ
�
: (44)

For each individual feature on the mask M,

∂M
∂ΩðmzÞ

¼ ∂MV

∂ΩðmzÞ
; (45)

whereMV represents bothMF andMS. The derivative ofMV
can be derived from Eqs. (17) and (18).

∂MV

∂ΩðmzÞ
¼ ð1 − tÞ · ∂mV

∂ΩðmzÞ
· exp½iπ · ð1 −mVÞ�

− ½ð1 − tÞ · mV þ t� · iπ

· exp½iπ · ð1 −mVÞ� ·
∂mV

∂ΩðmzÞ
; (46)

where mV represents both mF and mS.
The derivatives of the mask parameters ∂mV∕∂ΩðmzÞ are

listed in Appendix B. By substituting ∂mV∕∂ΩðmzÞ into
Eq. (46), the derivative of the cost function D with respect
to the mask parameter ΩðmzÞ can be solved.

4.2.3 Derivative of the NA

The derivative of the cost function D with respect to ΩðNAÞ
is

∂D
∂ΩðNAÞ ¼

∂D
∂IAI

·
∂IAI

∂ΩðNAÞ : (47)

The term ∂IAI∕∂ΩðNAÞ can be derived from Eq. (5).

∂IAI
∂ΩðNAÞ ¼

Iclear · ∂Iim∕∂ΩðNAÞ − Iim · ∂Iclear∕∂ΩðNAÞ
ðIclearÞ2

;

(48)

where

∂I
∂ΩðNAÞ

¼
ZZ

Sðαs; βsÞ ·
�

∂E
∂ΩðNAÞ · E

� þ E ·
∂E�

∂ΩðNAÞ
�
dαsdβs:

(49)

In Eq. (49), I represents both Iim and Iclear, while E rep-
resents the electric field of the mask M and the mask Mclear.
∂E∕∂ΩðNAÞ can be derived from Eq. (3):

∂E
∂ΩðNAÞ ¼

2π

ni · R
· F−1

�
∂QNA

∂ΩðNAÞ · Cðαi; βiÞ · Ψðαi; βiÞ

· FfMðx; yÞg · Ein · eiδ
�
: (50)

The term ∂QNA∕∂ΩðNAÞ can be derived from Eq. (19).

∂QNA

∂ΩðNAÞ ¼
2bna

� ffiffiffiffiffiffiffiffiffiffi
α2iþβ2i

p
NA

�
2bna−1

�� ffiffiffiffiffiffiffiffiffiffi
α2iþβ2i

p
NA

�
2bna þ 1

�
2
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i þ β2i

p
ðNAÞ2 ·

∂NA
∂ΩðNAÞ :

(51)

Finally, the derivative of the cost function D with respect
to the NA ∂D∕∂ΩðNAÞ can be solved.

The steepest-descent direction d can be calculated after
all the derivatives have been solved. Finally, the parameters
can be optimized by using the steepest-descent method iter-
atively until the termination condition is satisfied.

5 Implementation of Parametric SMNO
In order to demonstrate the validity of the proposed optimi-
zation method, we illustrate the simulation results for the
SMNO in this section. For comparison consideration, a para-
metric SMO without NA optimization is also performed in
the simulations.

The lithography system is an argon fluoride (ArF) immer-
sion lithography system with variable NA. The reflection
index of the immersion medium is n ¼ 1.44. The wavelength
is λ ¼ 193 nm. The reduction of the projector is R ¼ 4.

The simulations use the parametric source and mask.
The source shape is quasar with Y polarization. Four source
parameters, σout, σwidth, θ1, and θ2, are optimized. The
source array dimension NS is 41. A 45-nm AttPSM line-
space pattern is used as a target in the simulation. There
are three lines in the 600 nm × 600 nm wafer, while the
mask array dimension N is 600. As shown in Fig. 5(a),
each line feature is 45 nm in width and 360 nm in height,
while the space between the lines is 90 nm. The feature
transmittance is tm ¼ ffiffiffiffiffiffiffiffiffi

0.06
p

, with a 180 deg phase shift
to enhance the resolution. With the modeling in Sec. 3.2,
we can change the feature width, feature height, and
serif to compensate for the optical proximity effects. All

Fig. 5 (a) Target pattern. (b) The number of main feature and
serif.
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the main features and serifs are numbered in Fig. 5(b).
Because the mask pattern has fourfold symmetry, we
need only optimize the mask parameters on the top-left
quarter, which simplifies the optimization procedure.
Thus, 10 mask parameters are optimized, including m1

w
and m1

h of main feature 1, m2
w and m2

h of main feature 2,
m4

ss and m4
so of serif 4, m5

ss and m5
so of serif 5, and m6

ss

and m6
so of serif 6.

There are 15 parameters in optimization, 4 source param-
eters, 10 mask parameters, and NA. Nonoptimized initial
parameter values are given to serve as a starting point for
optimization. The initial parameter values, minimum value
Pmin, and maximum value Pmax are listed in Table 1. The
step lengths Λ in Eq. (26) are 0.01, 0.1, and 0.02 for source,
mask, and NA parameters, respectively. The steepness of
the parameters are all equal to 40 for bs, bm, and bna. The
constant bp in Eq. (33) is 0.05.

The steepness ar ¼ 40 and the image threshold rt ¼ 0.25
when calculating the resist image. In order to increase the
DOF, the resist images at the best focus position (δ ¼ 0 nm)
and the 150-nm defocus position (δ ¼ 150 nm) are simu-
lated. We assign ωfoc ¼ 0.3 in Eq. (24) and ωg ¼ 0.8 in
Eq. (23). The constant c in Eq. (22) is 1. The optimization
terminates after 100 iterations.

The simulations are performed using the optimization
algorithm in Sec. 4. The simulation for SMO uses the

same optimization condition with SMNO except for NA.
Simulation results for the SMO and SMNO are listed in
the last two rows of Table 1 and are also shown in Fig. 6.
The results show that both source and mask parameters
are optimized after SMO and SMNO. It is noted that the
optimal NA for this kind of target pattern is 1.013, which
can realize the designated resolution and maintain high pat-
tern fidelity within a large DOF.

The optimized source, mask, and resist image at the best
focus, 100-nm defocus, and 150-nm defocus positions are
all shown in Fig. 6. The red solid line in the figure indicates
the target pattern. The PEs are also marked on the top of
each resist image. From Fig. 6, one can see that without
optimization, the mask can only be printed on the wafer
at the best focus position with a large PE of 22,656, whereas
no pattern can be printed at the 100-nm and 150-nm defocus
positions. When the parametric source and mask have been
optimized by using SMO, the mask can be printed at both
the best focus and the defocus positions. The resist image is
highly faithful to the target pattern with a PE of 5800 at the
best focus. However, the PE equals 36,168 at the 150-nm
defocus position, which is too large to maintain pattern
fidelity. When performing SMNO, we found that the resist
image could maintain high pattern fidelity through a large
DOF. The PE of SMNO at the best focus, 100-nm defocus,
and 150-nm defocus positions are 8038, 7430, and 14,186,
respectively. Although the PE of SMNO is larger than that
of SMO by 2238 at the best focus position, the PE values
at the defocus positions are significantly less. The PE of
SMNO at the 150-nm defocus position is 656 and 21,982
smaller than the PE of SMO at the 100-nm and 150-nm
defocus positions. Figure 7 shows a comparison of the
PEs at various defocus positions, where we found that
the PE of SMO increases drastically at a defocus position,
but SMNO maintains a low level of PE over a large range of
DOF. The comparison of optimization results between the
SMO and SMNO demonstrates that SMNO could effec-
tively improve the pattern fidelity and enlarge the DOF,
which also reveals that it is necessary to include NA in
the optimization.

In contrast to pixelated SMO, we may note that the
source and mask always maintain an exceedingly low
complexity after optimization. The source has been opti-
mized by adjusting the partial coherent factor, while the
mask has been optimized by changing the feature size
and adding a serif. There is no need to customize the dif-
fractive optical elements or purchase an expensive pixel
source generator when using the parametric source. The
mask can maintain a low complexity after optimization.
The parametric source and mask can, therefore, effectively
reduce the cost of fabrication and provide high stability in
production.

Figure 8 presents the convergent curves of the cost func-
tions for SMO and SMNO. The red-circle line represents
the cost function of SMO, while the black-triangle line illus-
trates SMNO. By incorporating NA in optimization, the cost
function could be reduced much further.

The above performance comparisons reveal that the pro-
posed parametric SMNO method can effectively improve
the pattern fidelity and enhance the robustness of the optical
lithography systems. NA should be considered in the opti-
mization when optimizing the source and mask.

Table 1 Parameter settings, and source mask optimization (SMO)
and source-mask-numerical aperture co-optimization (SMNO) results.

Parameters Initial Pmin Pmax

SMO
result

SMNO
result

Source σout 0.78 0.6 1 0.631 0.734

σwidth 0.15 0.1 0.3 0.106 0.128

θ1 (deg) 45 30 60 30.033 30.085

θ2 (deg) 45 30 60 30 30

Mask m1
w (nm) 45 40 100 52.337 59.386

m1
h (nm) 360 350 480 425.3 406.847

m2
w (nm) 45 40 100 51.098 56.567

m2
h (nm) 360 350 480 425.333 429.145

m4
ss (nm) 20 0 50 28.4 33.5

m4
so (nm) 10 −10 20 14.234 14.662

m5
ss (nm) 20 0 50 22.285 24.904

m5
so (nm) 10 −10 20 15.096 14.146

m6
ss (nm) 20 0 50 27.691 25.484

m6
so (nm) 10 −10 20 14.582 14.148

NA NA 1.3 1 1.35 — 1.013
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Fig. 6 Optimization result of source mask optimization (SMO) and source-mask-numerical aperture
co-optimization (SMNO). The red solid line indicates the target pattern. Pattern errors (PEs) are marked
on the top of each resist image. The SMNO could keep good pattern fidelity through a large depth of
focus (DOF).

Fig. 7 Comparison of PE between SMO and SMNO. PE of SMO
increases drastically at defocus position, while SMNO could maintain
a low level of PE in a large DOF.

Fig. 8 Comparison of cost functions between SMO and SMNO.
SMNO could converge better than SMO.
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6 Conclusion
This paper proposes a parametric SMNO method using a
vector imaging model to improve the pattern fidelity and
DOF. We develop an analytical approach to the parametric
source, mask, and NA, which could be effectively applied
in inverse lithography. The mathematical expressions of
the derivatives of source, mask, and NA parameters are
derived on the basis of the vector imaging model. The
steepest-descent algorithm is used to optimize the source,
mask, and NA iteratively. Simulation results show that the
SMNO produces a better source, mask, and NA combina-
tion compared to SMO. Simulation results also reveal that it
is necessary to optimize NA to achieve superior lithography
performance. The optimized parametric source, mask, and
NA are capable of maintaining high pattern fidelity within
a large DOF. The parametric source shape and mask layout
are in an extremely simple distribution, which could
effectively reduce the cost of fabrication and provide
high stability in high-volume production. In our future
work, we will improve the parametric expression of the
mask to model a more complex shape, such as an L-shape
and T-shape, and apply the SMNO to full-chip mask
optimization.

Appendix A
According to Eq. (10), the derivatives of the source param-
eters ∂SQ∕∂ΩðsvÞ are

∂S
∂ΩðσoutÞ

¼ KR ·

�
2bs · ðrs∕σoutÞ2bs−1
½ðrs∕σoutÞ2bs þ 1�2 ·

rs
ðσoutÞ2

−
2bs · ½rs∕ðσout − σwidthÞ�2bs−1
f½rs∕ðσout − σwidthÞ�2bs þ 1g2

·
rs

ðσout − σwidthÞ2
�

·
∂σout

∂ΩðσoutÞ
; (52)

∂S
∂ΩðσwidthÞ

¼ KR ·

�
2bs · ½rs∕ðσout − σwidthÞ�2bs−1
f½rs∕ðσout − σwidthÞ�2bs þ 1g2

·
rs

ðσout − σwidthÞ2
�

·
∂σwidth

∂ΩðσwidthÞ
; (53)

∂S
∂Ωðθ1Þ

¼ SA ·

0
B@ 2bs ·

h	
2 · 180π · a cos αsrs

− 180


∕ð180− θ1Þ

i
2bs−1

nh	
2 · 180π · a cos αsrs

− 180


∕ð180− θ1Þ

i
2bs þ 1

o
2

·
2 · 180π · a cos αsrs

− 180

ð180− θ1Þ2

1
CA ·

∂θ1
∂Ωðθ1Þ

; (54)

∂S
∂Ωðθ2Þ

¼ SA ·

0
@ 2bs ·

h	
2 · 180π · a cos αs

rs
− 180



∕θ2

i
2bs−1

nh	
2 · 180π · a cos αs

rs
− 180



∕θ2

i
2bs þ 1

o
2

·
2 · 180π · a cos αs

rs
− 180

ðθ2Þ2

1
A ·

∂θ2
∂Ωðθ2Þ

: (55)

Appendix B
The derivatives of the mask with respect to the mask param-
eter ∂mV∕∂ΩðmzÞ are

∂mi
F

∂Ωðmi
wÞ

¼ −
2bm

h
2ðx−xi

0
Þ

mi
w

i
2bm−1

nh
2ðx−xi

0
Þ

mi
w

i
2bm þ 1

o
2
·
2ðx − xi0Þ
ðmi

wÞ2

·
1h

2ðy−yi
0
Þ

mi
w

i
2bm þ 1

·
∂mi

w

∂Ωðmi
wÞ

; (56)

∂mi
F

∂Ωðmi
hÞ

¼ −
2bm

h
2ðy−yi

0
Þ

mi
h

i
2bm−1

nh
2ðy−yi

0
Þ

mi
h

i
2bm þ 1

o
2
·
2ðy − yi0Þ
ðmi

hÞ2

·
1h

2ðx−xi
0
Þ

mi
h

i
2bm þ 1

·
∂mi

h

∂Ωðmi
hÞ
; (57)

∂mi
S

∂Ωðmi
ssÞ

¼ −

0
@ 2bm

h
2ðx−xi

0
−mi

soÞ
mi

ss

i
2bm−1

nh
2ðx−xi

0
−mi

soÞ
mi

ss

i
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o
2
·
2ðx − xi0 −mi

soÞ
ðmi
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·
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0
−mi
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0
−mi

soÞ
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i
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2ðy−yi

0
−mi
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ss

i
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o
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−mi

soÞ
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ss
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1
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∂mi
ss
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;

(58)

∂mi
S
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0
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0
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