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Abstract. Defects in semiconductor processes can limit yield, increase overall production cost,
and also lead to time-dependent critical component failures. Current state-of-the-art optical and
electron beam (EB) inspection systems rely on rule-based techniques for defect detection and
classification, which are usually rigid in their comparative processes. This rigidity limits overall
capability and increases relative engineering time to classify nuisance defects. This is further
challenged due to shrinkage of pattern dimensions for advanced nodes. We propose a deep learn-
ing-based workflow that circumvents these challenges and enables accurate defect detection,
classification, and localization in a unified framework. In particular, we train convolutional
neural network-based models using high-resolution EB images of wafers patterned with various
types of intentional defects and achieve robust defect detection and classification performance.
Furthermore, we generate class activation maps to demonstrate defect localization capability of
the model “without” explicitly training it with defect location information. To understand the
underlying decision-making process of these deep models, we analyze the learned filters in pixel
space and Fourier space and interpret the various operations at different layers. We achieve high
sensitivity (97%) and specificity (100%) along with rapid and accurate defect localization. We
also test performance of the proposed workflow on images from two distinct patterns and find
that in order to retain high accuracy a modest level of retraining is necessary. © 2020 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.19.2.024801]
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1 Introduction

Any semiconductor process used in high-volume manufacturing has a certain defectivity level
specification that is required to be monitored to maintain the yield of the final product.
Significant time and effort are spent in optimizing processes to maintain the desired level of
defectivity, which is monitored through routine inspections that involve defect detection and
classification. Automated defect classification algorithms use tags provided by engineers to
perform classification and are relatively rigid when performing comparison and classification.
In general, it is difficult to attain high values of sensitivity (number of defective patterns that are
detected correctly out of total number of defective patterns) in defect detection and classification.
The requirement of high sensitivity often leads to an increase in the number of defect-free pat-
terns that are incorrectly classified as defects. This requires critical reviews to be performed by
engineers to sanitize the inspections setups, which can consume substantial time and resources.

With the advent of faster graphics processing units (GPUs), better techniques for acquiring
and storing data, and the development of innovative algorithms, deep learning techniques have
seen an exponential growth in solving image-based detection and classification problems. Since
most inspection and review tools in semiconductor manufacturing/processing produce grayscale
images, this raises the possibility of using deep neural networks for these tasks to perform defect
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detection, classification, and localization with higher sensitivity and specificity. Further, they
may be applicable to different patterns and technologies. With this as motivation, in this work,
we apply convolutional neural network (CNN)-based models on images collected from electron
beam (EB) inspection and quantify its performance in detecting, classifying, and locating
defects, as well as develop an understanding on how it performs classification tasks.

1.1 Defects in Lithography

Defects in semiconductor lithography can range from being critical failures to yield limiters.
Semiconductor manufacturers have stringent requirements to capture all defect types, and engi-
neers spend significant time to review and debug inspection data. Figure 1 shows examples of
defects commonly encountered in semiconductor processes. Figures 1(a) and 1(b) show line/
space patterns with bridge type and partial line missing types defects, respectively. Figures 1(c)
and 1(d) show pattern missing and bridge type defects for contact patterns, respectively.1

To assess sensitivity of defect inspection tools (minimum defect detection capability of an
inspection tool), defects are intentionally placed in test structures and patterned on wafer. These
wafers are inspected by various tools and capture efficiencies are monitored. These defects can
be of various types and sizes, and may be located anywhere within a pattern. The printability of
defects on wafer is a function of patterning process and detection capability.

Apart from detection of defects, classification is a major challenge as it can consume a lot of
engineering resources and time.1 Figure 2 shows examples of multiple types of intentional
defects that were used as part of tool sensitivity assessment. Figure 2(a) shows multiple defect
types for line space pattern and Fig. 2(b) shows defect types for contact patterns. These defect
types are commonly found as a result of defects on photomasks or patterning processes and
emphasize the challenge in classification. Classification is an important part in a defect inspec-
tion process and can be used to identify the root cause of defects and assess any modulation
based on process fixes.

1.2 Deep Learning and Convolutional Neural Networks

The advancement of semiconductor technology and ever-increasing prevalence of personalized
smart devices have enabled the development of powerful computational resources and collection
of a large amount of data. These two ingredients have enabled powerful machine learning (ML)

Fig. 1 Typical defects.
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algorithms with applications ranging from recommendation systems and fraud detection in
e-commerce websites to web searches and content filtering on social networks. Recently, deep
learning has made substantial progress in a variety of different tasks, such as detecting objects in
an image, translating a sentence from one language to other, generating images from sentences,
and developing self-learning robots.2–5 The final objective in these seemingly diverse applica-
tions is achieved by the same underlying principle, which is to take raw data as input, extract
useful features directly from this data, and use these features to accomplish the given task.

Every deep learning model encodes this principle by performing a sequence of nonlinear
transformations of input data. Depending on the type and the order of transformations, one can
classify deep learning models into different categories. CNN is a type of deep learning model
that is composed of sequence of convolution operations followed by nonlinear transformations.6

It is particularly useful for data with hierarchical structure, such as images, as it allows the extrac-
tion of important local features in a stratified fashion. In a CNN, the convolution layers are
usually followed by fully connected layers, which manipulate the extracted features in high-
dimensional space, which is then passed to final output layer, which performs the output task
(classification, regression, etc.).

1.3 Semiconductor Defect Inspection Using Deep Learning

In recent years, deep learning has shown remarkable capability in automatically extracting task-
specific features from data and performing different tasks, such as image classification, object
localization, semantic segmentation, etc.6–8 Indeed, deep learning algorithms have now sur-
passed human performance on many benchmark datasets.6 This has made them a tool of choice
for various semiconductor defect inspection tasks. Many recent works9–12 have explored the use
of deep learning for hotspot detection. This includes the use of CNN-based models9 and their
modification to tackle data imbalance to achieve high accuracy and lower nuisance rate.10,12

In another line of work, researchers have explored the use of deep learning algorithms in
defect pattern recognition (analysis of the distribution of defect patterns on the whole wafer),
which provides valuable information about the root cause of defects and helps improve the over-
all yield and reliability. This includes the use of synthetic wafer map images to train a CNN for
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Fig. 2 Different types of intentionally introduced defects. (a) Line/space (1-D) patterns. A: Pindot—
unwanted absorber in a clear area, C: opaque extrusion—absorber extrusion, E: clear extrusion,
G: two-side clear extrusion, I: two-side clear intrusion, S: corner extrusion, X: pinhole—unwanted
clear area in absorber, Y: clear extrusion—line end. (b) Line/Space (1-D) patterns. A: pindot—
unwanted absorber in a clear area, C: opaque extrusion—absorber extrusion, E: clear extrusion,
G: two-side clear extrusion, I: two-side clear intrusion, S: corner extrusion, X: pinhole—unwanted
clear are in absorber, Y: clear extrusion—line end.
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classification of defect pattern and image retrieval task13 and the use of clustering-based algo-
rithms for simultaneous detection of outliers and recognition of defect patterns.14 More recent
works have explored the use of stacked convolution sparse denoising autoencoder for robust
defect pattern recognition on wafer map15 and the use of generative adversarial network (GAN)
to tackle the imbalanced data problem in defective pattern recognition task.16

In the above-mentioned applications, the critical features (hotspot or defect patterns) are at a
relatively larger scale (at wafer level). However, there are many instances when the defects are at
a small scale (same scale as the technology nodes—few nanometers). In these cases, the current
state-of-the-art optical and EB inspection tools, which rely on grayscale differences between the
background pattern and the defect pattern, require careful manual tuning of many process param-
eters, which is a time-consuming and expensive process. Furthermore, it is observed that optimal
value of these parameters depends on defect types.17 Moreover, the capture efficiency of this
manual technique is found to be directly proportional to the nuisance rate.17 The work presented
in this paper tackles the defect detection and classification problem.

In our earlier work,18 we proposed a deep learning-based model that could be trained directly
using high-resolution EB images and eliminated the need of manual parameter tuning and
accuracy-nuisance rate dependence. In this work, we build on that and investigate the perfor-
mance of two CNN models on more challenging tasks. First, we consider the use of raw EB
images that display more variability, but do not require any preprocessing and thus can be seam-
lessly integrated with existing automatic defect classification systems. Second, we consider a
situation where a model trained on images of a given pattern is used to perform classification
on images with a different pattern with access to a small number of training images from the new
pattern. This situation is quite common in applications, such as self-driving cars,19 medical im-
aging,20 and robotics,21 where real data are quite scarce and/or expensive, and some form of
transfer learning or domain adaptation strategy is adopted.

The rest of this paper is organized as follows. Section 2 is focused on the method employed in
this study and it describes both the experimental setup used to generate the training data and
computational setup—CNN architecture and training details. Here, we consider two different
CNN architectures that differ in the final few layers. One uses fully connected layers and the
other uses the global average pooling (GAP). Section 3 is focused on results and analysis.
Specifically, we quantify the accuracy of CNN-based models in classifying different types
of defects and analyze the activation maps and convolution filters of each layers to better
understand the learning process. We also generate the heatmap showing class activation maps
(CAMs) for each class. Section 4 demonstrates the performance of two different CNN models
described in Sec. 2 on more challenging image detection tasks. We end with concluding remarks
in Sec. 5.

2 Methods

2.1 Generation of Data

In the first study, a line space pattern with 30 different types and sizes of intentionally placed
defects was fabricated. Figure 2(a) shows sample defect types used as part of this study. These
defect types are commonly found in photomasks or patterning processes. The pattern with these
intentionally placed defects was transferred to wafer, which was imaged using EB inspection
system. In the second study, a square contact pattern with 30 different types and sizes of synthetic
defects was considered. This dataset is described in more detail in Sec. 4.2.

Figure 3 shows the data generation workflow, which begins with the design with different
intentional defects marked on it. This is used to pattern the wafer, which is imaged using an EB
inspection setup. A grid is placed on this “EB image” to help create a small subimage of appro-
priate size, which is then used to train the CNN. Each subimage is then appropriately labeled.

In this study, images are categorized into three different classes. As shown in Fig. 4, all the
images containing defects that cover a single line (open, short, etc.) are placed within the single
line break defect class (in the figure a brown-rectangle is drawn around the defect for the reader
to locate it); whereas all the images that contain defects spanning multiple line instances or
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images containing a missing vertical line are placed within the multiline break defect class.
Finally, all images that do not contain any defect are placed in the defect-free image class.

Table 1 represents the data distribution for this study. As shown in the table, there are 527
images in total that are split into training, validation, and testing sets. The training set is used to
find the parameters of the model, the validation set is used to tune the hyperparameters of
the model, and the testing set is used to evaluate and report the performance of the model.
Out of the 216 images of single line break class, only 36 are unique images. These unique images
are augmented (by a factor of 6) by reflection and translation to reduce the class imbalance
problem. Similarly, the multiline break class contains only 52 unique images, which are then
augmented by a factor of 2. This type of data augmentation is often employed in data-sparse
applications to avoid overfitting and tackle class imbalance-related problems.

Fig. 4 Typical images of each class.

Table 1 Data distribution.

Single line
break

Multiline
break Defect-free Total

Train 167 77 151 395 (∼75.0%)

Validation 28 16 22 66 (∼12.5%)

Test 21 11 34 66 (∼12.5%)

Total 216 104 207 527

Fig. 3 Data generation.
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2.2 CNN Models

Figure 5 shows two different models used in this study. Both models take input image of size
299 × 299 and both have four convolutional stages, where each convolutional stage is comprised
of several convolution filters followed by rectified linear units (ReLUs). The filter size, padding,
stride, and number of filters for each layer are selected to ensure having rich feature maps of
reasonable size at the end of last convolution stage.

In the CNN-FC model, as shown in Fig. 5(a), these feature maps are reshaped into a fully
connected layer (of size 4096). This fully connected layer is then connected to a second fully
connected layer of size 512 with a dropout. Dropout is a special type of regularizing technique23

that helps to prevent overfitting and improves generalization ability. In the dropout layer, the
activation of neurons is randomly set to zero with probability p in each training step. The value
of p is usually tuned using the validation set. In this study, we observed that p ¼ 0.5 attains
highest validation accuracy. This second fully connected layer is connected to a softmax clas-
sifier of size 3 (number of classes).

Next, we consider CNN-GAP model. The architecture of this model is shown in Fig. 5(b).
In addition of performing the standard classification task, CNN-GAP model can also generate
CAMs highlighting the region most influential in the final prediction. This makes this deep
model more interpretable by providing additional insights into the decision-making process
of the model, making it a preferred choice of deep model in applications where it is critical
to have some understanding of the internal working of a classifier. Furthermore, as we showcase
in Sec. 3.3, for this particular application, CAM also helps to identify the exact location
of defects in a weakly supervised fashion. In other words, we are able to identify the exact
location of a defect inside an image without explicitly training the model with defect location
information.

In CNN-GAP model, as shown in Fig. 6, the extracted feature maps after fourth convolution
stage are connected to a GAP layer.24 Specifically, we take the feature maps of the last convo-
lution stage, perform a spatial average, and feed this average values to the GAP layer. This GAP
layer is then connected to the final output layer for classification. Given this simple structure, we
can think of the learned weights of this final layer as importance weights of the corresponding
feature maps, as they indicate how important a particular feature map is in performing the final
prediction. Hence, we can take the linear combination of the feature maps of the final convo-
lution stage to generate CAMs.22 Later, we describe this more formally for the three-class
classification problem considered in this paper.

For a given image, let akðx; yÞ represents the activation of k’th channel in the last convolu-
tional stage at spatial location ðx; yÞ. Then, the value of unit k in the GAP layer is obtained by

Fig. 5 CNN models. (a) CNN-FC: convolutional neural network with fully connected layers and
(b) CNN-GAP:22 convolution layers followed by GAP layer (S = stride; P = padding).
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performing global average pooling: fk ¼ P
x;y a

kðx; yÞ. Thus for a given class c (where c =
single line break, multiline break, or defect-free), the input to final softmax classification layer,
Sc, is

P
kw

k
cfk, where wk

c is the weight corresponding to class c for unit k indicating importance
of fk for class c. Finally, the classification output for class c is given by softmax function

expðScÞP
c
expðScÞ

. This calculation is schematically shown in top row of Fig. 6.

Let Ac be the CAM for class c, then Acðx; yÞ ¼
P

kw
k
cakðx; yÞ. This process is graphically

depicted in second row of Fig. 6 as an example for multiline break. Note that the dimension of
Acðx; yÞ is much smaller than input image; hence, we upscale it using bilinear interpolation to
input image dimension. In Sec. 3.3, we provide more examples of CAMs generated by this
CNN-GAP model for all three classes of images.

2.3 CNN Training

We use the training data (with distribution described in Table 1) to train these models for
classification task and use validation set to tune the hyperparameters. Both models were imple-
mented in Tensorflow25 on a desktop with a single Nvidia 1080Ti GPU. The Adam optimizer26

with appropriately tuned learning rate (1e-4) and momentum parameters (β1 ¼ 0.9, β2 ¼ 0.99)
was used to train these models.

3 Results and Discussion

In this section, we quantify the performance of both models described in Sec. 2. We also analyze
the filters of CNN-FC model and examine the convolution activation maps/heatmaps generated
by CNN-GAP model to better understand the learning process.

3.1 Defect Detection and Classification Task

Figure 7 shows training and validation accuracy as a function of epochs for the CNN-FC and
CNN-GAP models. In ML jargon, an epoch is completed when every example in training dataset
has passed through one training cycle. As can be observed from Fig. 7, both training and val-
idation accuracies improve almost monotonically as training progresses and there is no sign of
overfitting.

Table 2 shows the performance of the fully trained CNN-FC and GAP models on the testing
data in the form of a confusion matrix. As can be observed from this table for the CNN-FC

Fig. 6 CAM highlighting the location of defect is generated by taking linear combination of acti-
vations of last convolutional layer and upscaling the resulting map to original image size. For
training this CNN-GAP model, only image-level labels (defect-free/single line break/multiline
break) are provided and no information about exact location of defect is required; however,
CAM is still capable of identifying the exact location of defect. (Visualization inspired by Ref. 22.)

Patel et al.: Deep learning-based detection, classification, and localization of defects. . .

J. Micro/Nanolith. MEMS MOEMS 024801-7 Apr–Jun 2020 • Vol. 19(2)



model, there is only one false negative and one false positive, indicating robust performance of
this model. The overall accuracy is around 97% with a sensitivity of 97% and a specificity of
96.9%. We remind the readers that sensitivity is the ratio of defective images that are being
classified correctly to the total number of defective images and specificity is the ratio of
defect-free images that are being classified correctly to the total number of defect-free images.
From this table, we also observe that the GAP model is even more accurate as it is able to
correctly classify all but one image, resulting in an accuracy of 98.5%, sensitivity of 96.9%,
and specificity of 100%.

We note that the false-negative image for CNN and GAP models was the same image con-
taining a very tiny defect close to the image boundary. It is our suspicion that the models mis-
classified this image due to the defect size (one of the smallest defect in the dataset) and expect
that by including more such images in the training dataset, our model might be able to classify
this image correctly.

3.2 Analysis of Convolution Layers

In situations where important decisions are made based on the outputs of ML models, it is desir-
able to have some understanding of the underlying decision-making process of these learning
models. One simple way of doing this is to analyze the activation maps and the corresponding
convolution filters of a trained CNN model.

Figure 8 shows the typical activation maps at each layer for three different classes of images.
The left most column represents three typical images from the three different classes. From top to
bottom, these images represent the single line break, the multiline break, and the defect-free

Table 2 Confusion matrix for CNN-FC and GAP architectures.

Test set (N ¼ 66)

Actual

Defect-free Multiline break Single line break

Predicted (FC) Defect-free 33 0 1

Multiline break 0 11 0

Single line break 1 0 20

Predicted (GAP) Defect-free 34 0 1

Multiline break 0 11 0

Single line break 0 0 20

Fig. 7 Evolution of training and validation accuracy with epochs for (a) CNN-FC and (b) CNN-GAP
models.
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classes, respectively. Next, we pass each of these three images through a trained CNN-FC model
and visualize the activation map at each layer starting from the first layer in column 2 to
the fourth layer in column 5. Since each convolution stage is comprised of multiple filters,
we obtain multiple activation maps at each layer. Due to space constraint, we only present
a typical activation map image from each layer. As can be seen from these ReLU activation
maps, the trained CNN-FC model is able to differentiate between defect and the background.
It does so by highlighting the defects in layers 1 and 2, and then deleting the background in
layers 3 and 4.

Next, we analyze the learned convolution filters. Figure 9 shows some typical active con-
volution filters (top row) of first three layers of the trained CNN-FC model and their correspond-
ing Fourier transform (bottom row). In the Fourier map, the kx ¼ ky ¼ 0 component is at the
center of the image and the horizontal and vertical axes represent wavenumbers (kx and ky,
respectively) along those directions.

By analyzing these filters, we can qualitatively understand the operations at each layer.
In layers 1 and 2, the filter on the left is a weighted average operator. This can be concluded
by observing that all the convolution weights are greater than zero and the spectrum of the con-
volution in the Fourier domain is peaked at the origin. In contrast, the filter to the right appears to
be close to a first-order derivative. This can be concluded by observing the left-right asymmetry
in its weights, which translates to a dip in the Fourier spectrum at the origin followed by peaks
along the horizontal direction. Thus, one may conclude that these layers are mainly concerned
with smoothing and enhancing edges in the images.

For the third layer, the filter shown on the left is once again an averaging/smoothing filter.
The filter on the right is a shift operator. This may be concluded by observing that it has nonzero
entries on the left. Therefore, the operation of this filter would shift an image to right. It is likely
that this filter was used by the network in conjunction with an averaging filter to delete the
background as shown in Fig. 8.

Fig. 8 Typical ReLU activation maps at each layer for three different class of images.

Fig. 9 (a) Convolution filters and (b) corresponding Fourier transform of some typical active filters
of first three layers for CNN-FC model.
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3.3 Defect Localization using Class Activation Maps

As explained in Sec. 2, a slight modification of the standard CNN model with a GAP layer
enables generation of CAMs/heatmaps that point to the regions that are most influential in
making the final classification.

Figure 10 shows three typical images of each class and their corresponding CAM obtained
through trained CNN-GAP model. As shown in the figure, the trained model has focused on the
location that contains the defect to make the final prediction. This map can be used to localize the
appropriate defect. This localization is obtained in an unsupervised mode, because when training
the network, we only provide the label for a given image and not the location of a defect. The
location is automatically learned by the net and can be visualized using the heatmap. It is also
worth noting that for the image with no defect, the heatmap is much more spread out with overall
low intensity values.

4 Toward More Challenging Classification Problems

In this section, we consider two variants of classification problem that are guided by the goal of
extending the applicability of the ML algorithm to more challenging problems commonly
encountered in semiconductor defect detection workflow, thereby reducing the burden on the
human ally. In doing so, we use the same CNN architecture and hyperparameters that were used
in the previous section.

4.1 Electron Beam Images with More Variability

First, we consider the use of EB images that are derived from the raw EB images with no pre-
processing, which in turn introduces more variability. In particular, we waive the requirement of
working only with images where the entire image is covered by the pattern. Instead, we allow
images that are entirely or partially covered by a pattern, or have no pattern at all (see Fig. 11).
This gives the human ally complete freedom in selecting any subregion of the larger EB image
and passing it through the classifier, without needing to ensure that the entire image is filled by
the pattern.

We train and test both the CNN-FC and CNN-GAP models using these types of images,
where the breakup of the training/test data is described in Table 3. The confusion matrices
obtained from the trained architectures are presented in Table 4 for FC and GAP architectures.
We note that the networks are able to perform accurately even with inclusion of images with
more variability (no patterns, partial patterns, and full patterns). The performance metrics for the
FC network are: sensitivity = 94.8%, specificity = 100%, and accuracy = 97.6%, while those for
the GAP network are: sensitivity = 98.3%, specificity = 91.9%, and accuracy = 94.9%.

Fig. 10 CAMs obtained from CNN-GAP architecture.
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4.2 Performance on Multiple Patterns

Next we consider the following question: given a CNN-based classifier that is trained to work for
a given pattern (source pattern), to what extent must it be retrained in order to classify similar
defects in another pattern? We measure the extent of “retraining” of the network by the fraction
of images from the new pattern (target pattern) in the training set. That is, the ratio of the number
of images from target pattern to the total number of images from both (source + target) patterns.
If this fraction is zero, no retraining is required. On the other hand, when this fraction approaches
1∕2, a significant amount of retraining is required. In the context of the results presented in the
previous section, the original (source) pattern is the vertical line (line/space) pattern, and the new
(target) pattern is a square (contact) pattern, that is considered for the first time in this section.
Typical images selected from the square pattern are shown in Fig. 12.

First, we consider the two models from the previous section that were trained on images with
a vertical line pattern with the data distribution described in Table 3. The performance of these
models on images with vertical line patterns is presented in Table 4. We then use these models to

Table 3 Data distribution for images with higher variability.

Defective Defect-free Total

Train 692 858 1550

Test 172 198 370

Total 864 1056 1920

Table 4 Confusion matrix for images with high variability.

Test set (N ¼ 370)

Actual

Defect-free Defective

Predicted (FC) Defect-free 198 9

Defective 0 163

Predicted (GAP) Defect-free 182 3

Defective 16 169

Fig. 11 Typical images for the vertical line pattern containing both patterned nonpatterned
regions.
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classify images obtained from a square contact pattern and report their performance in Table 5.
We note that both models appear to classify most images as defect-free and demonstrate almost
no ability to discriminate between images with and without defects, thus indicating that some
retraining with the new pattern is necessary.

Next, we consider the effect of adding a small proportion of the square pattern images to the
training set (see Table 6 for the distribution). In this table, the number within the rectangular
parenthesis is the number of images from the square pattern set. The performance of the net-
works trained on this data is shown in Table 7. Even in this table the numbers within the rec-
tangular parenthesis refer to images from square contact patterns. We observe that both models
perform well for the entire data [vertical (line/space) and square (contact) patterns] and for data
specifically from the square patterns. For the FC network, we report a sensitivity of 94.9% and
a specificity of 90.9% for all images, and a sensitivity of 93.2% and specificity of 81.5% for
images restricted to the square contact pattern, whereas for the GAP network, we report a sen-
sitivity of 94% and a specificity of 93.6% for all images, and a sensitivity of 81.8% and

Fig. 12 Typical images for the square pattern containing patterned and nonpatterned regions.

Table 5 Confusion matrix for images with square contact pattern
for the FC and GAP models.

Test set (N ¼ 328)

Actual

Defect-free Defective

Predicted (FC) Defect-free 269 54

Defective 5 0

Predicted (GAP) Defect-free 274 54

Defective 0 0

Table 6 Data distribution for the hybrid dataset with ∼20%
images from the square (contact) pattern. The number of images
from square (contact) pattern is shown in rectangular parenthesis
and from vertical (line/space) pattern is shown outside.

Defective Defect-free Total

Train 864 [172] 1065 [220] 1929 (∼80.0%)

Test 216 [ 44] 265 [54] 481 (∼20%)

Total 1080 [216] 1330 [274] 2410
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specificity of 98.2% for images restricted to the square contact pattern. This leads us to conclude
that even adding a small amount of data from the target pattern can be useful in getting the
models to perform well with the new patterns.

5 Conclusions and Future Work

In this work we have demonstrated the effectiveness of optimized deep learning-based models in
identifying, localizing, and classifying different types of wafer defects with high degree of accu-
racy. We have achieved this by training two CNN-based models on high-resolution EB images of
patterns on a wafer with different types of intentionally placed defects. We have further analyzed
the convolution filters and corresponding activation maps to better understand the learning proc-
ess of CNN models. We have trained a CNN model with a GAP layer to generate CAMs and
demonstrated that these maps can be used to localize defects. We have also examined the effect
of introducing more variability in the input image dataset, which helps in reducing the amount of
preprocessing required. Finally, we have considered how these models might be retrained so that
they can be applied to a new pattern to detect and classify similar types of defects.

As the technology nodes further shrink making traditional defect inspection systems less
efficient and more expensive, we hope that this work will demonstrate and motivate the
usefulness of deep learning-based models for effective defect detection, classification, and
localization.

There are a couple of interesting directions for further research. One extension would be to
develop a pattern-invariant model that does not require any images from the target pattern.
Another interesting and practically useful avenue would be to perform detection and classifi-
cation in an unsupervised or semisupervised fashion. One possible solution for this is the use
of deep generative models, such as GAN, and pose the defect detection problem as an anomaly
detection problem.
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