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ABSTRACT. An ultra-fast image simulation algorithm is proposed. The new algorithm uses full
fast-Fourier-transform (FFT) to calculate the aerial image intensity. The wavelength,
193 nm, was scaled to a number of powers of 2, through scaling the mask with a
scaling factor derived from the discrete Fourier transform (FT) format. The mask can
then be transformed to the diffraction spectrum in terms of spatial frequency using
the FFT algorithm. Similarly, this mask diffraction spectrum can be inverse trans-
formed to the aerial-image by using the inverse-FFT algorithm. The image is finally
scaled back to the original image amplitude of the original wavelength and squared
to the image intensity. Comparing to the original FT, there is a 4000× to 5000× com-
putation speed improvement with only about 3% intensity deviation. This algorithm
provides an efficient engine for lithography optimization.
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1 Introduction
Simulations are intensively used in semiconductor lithography processes, no matter during proc-
ess development or mass production of IC chips. The computational lithography, generally con-
sisting of optical proximity correction (OPC),1–7 source mask optimization (SMO),8–14 inverse
lithography (ILT),15–17 and other simulation packages,18–20 is widely and accurately applied dur-
ing different phases of process development. At the path-finding stage, new types of phase-
shifting mask, resist materials, and resolution-enhancement techniques, should be thoroughly
studied and simulated to find opportunities for pushing the patterning resolution. After moving
to the process development stage, we need to simulate the process windows to establish the
design rules for each masking layer. Before that, the optimum numerical aperture (NA) and the
partial coherence parameter σ of the exposure tools have to be evaluated. Moreover, for modern
lithography, it needs SMO, OPC, pattern splitting (for multiple patterning), and even ILT, if the
resolution scaling coefficient k1 is beyond the control of conventional lithography process.21,22
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Even at the mass production stage, especially for the foundry with product-layout diversity, to
prevent the degradation of wafer yield from patterning hotspots, sophisticated simulations are
needed to detune OPC or SMO to remove the hotspots encountered.

There are two performance indicators for the widely used simulations in lithography tech-
nology: accuracy and speed. For cutting-edge semiconductor technology, the systematic critical-
dimension (CD) error tolerance is less than a few nanometers. For the 12-nm gate length, the CD
error specification is just �1.2 nm, 10% of the patterning CD. Similar but looser CD tolerance
are required for the metal and the contact layers. The mask CD must just be located at the center
of the wafer random CD-error distribution. A desirable OPC package is used to render the simu-
lated mask CD accuracy by the model and rules derived from all the predictable patterning
effects, such as optical, resist, etching and even chemical–mechanical polish.23 In addition, since
there are billions of transistors in a single chip, a speedy simulation is necessary. For example, the
10-nm technology node requires the simulation software to complete the simulation and correc-
tion work in less than a week. The computer CPU cores involved could be more than several tens
of thousands for multiple products handled simultaneously.

The algorithm presented in this paper can speed up the transformation between the physical
space and the spatial frequency space by making typical imaging simulations containing the
wavelength parameter to fit the fast-Fourier-transform (FFT) scheme. Depending on the number
of integrations needed, typical imaging simulations can be sped up by more than three orders of
magnitude.

2 Theory

2.1 Basic Simulation
The basic lithographic simulation, no matter the purpose, must include aerial image simulation.
For Fourier optics, it is the FT of the amplitude and phase distribution Mð~xÞ, through the mask;
then, inverse-FT back to the spatial domain after multiplying with a low-pass pupil function,

Pð~kÞ. The aerial image intensity Ið~xÞ of a point coherent light source.24–26 is defined as

EQ-TARGET;temp:intralink-;e001;114;397Ið~xÞ ¼
����
Z

∞

−∞
Pð~kÞe2πið~k·~xÞd~k

Z
∞

−∞
Mð~xÞe−2πið~k·~xÞd~x

����
2

; (1)

where ~x is the spatial position, ~k is the wave-vector with amplitude 1
λ, and λ is the wavelength of

the imaging light. For partially coherent light with distribution σð ~k 0Þ, the final aerial image inten-

sity is the summation of the individual intensity produced by each coherent source point ~k 0 and is
governed by Eq. (2), where Hopkin’s approximation is used:

EQ-TARGET;temp:intralink-;e002;114;301Ið~xÞ ¼
Z
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σð ~k 0Þd ~k 0
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Z
∞
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Mð~xÞe−2πið~k·~xÞd~x

����
2

(2)

The low-pass-filter pupil function, Pð~kÞ, as a function of the illumination distribution σð ~k 0Þ
can be expressed as the following:

EQ-TARGET;temp:intralink-;e003;114;235Pð~kÞ ¼
�¼ 1; ðk2x þ k2yÞ1∕2 < NA

λ¼ 0; ðk2x þ k2yÞ1∕2 > NA
λ

; (3)

where NA, the numerical aperture, is defined as n sin θ, n is the refractive index of the imaging

medium, and sin θ is the maximum allowed directional component of ~k to pass through the lens

pupil to contribute to the aerial image. On the other hand, the illumination distribution σð ~k 0Þ can
also be expressed as

EQ-TARGET;temp:intralink-;e004;114;144σð ~k 0Þ ¼
�¼ 1; ðk 02

x þ k 02
yÞ1∕2 < σ

λ¼ 0; ðk 02
x þ k 02

yÞ1∕2 > σ
λ

; (4)

where σ is the partial coherence parameter of the illumination system of an exposure tool. The
illumination distribution in Eq. (4) is a conventional disk illumination. For advanced lithography,
the illumination distribution is customized for lithography performance and can be an arbitrary
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distribution within unity, i.e., σ ¼ n sin θi
NA < 1. Here, n sin θi is the illumination NA, and θi is the

angle between the incident beam to the mask normal. The intensity obtained from Eq. (2) is based
on the TE polarization, linear polarization with the direction of the electric field tangential to the
wafer surface, and the diffraction amplitudes are scalar summed. For the TM polarization, Eq. (2)
needs to be corrected with the vector summation of the individual ampltitude.19,24 The pupil

function Pð~kÞ in Eq. (3) is an ideal pupil function. Equation (5) shows the real pupil function

P 0ð~kÞ, which is the ideal pupil function multiplied by a wavefront error function ei2πW :19,24

EQ-TARGET;temp:intralink-;e005;117;644P 0ð~kÞ ¼ Pð~kÞei2πW; (5)

where

EQ-TARGET;temp:intralink-;e006;117;606W ¼
X∞
i¼0

ZiFi; (6)

Zi is the Zernike coefficient and Fi is the Zernike Polynomial. Among those terms, Z3 is the
defocus term, which needs to be scaled along with other terms based on the new algorithm and
will be discussed later. The computation of Eq. (2) is the core step of lithography simulation.
Regardless of the application, be it for phase-shifting mask, mask three-dimensional effect, aber-
ration, defocus, or even ILT, there is a need for a fast aerial image calculation as a base to build
advanced applications for development of the realistic semiconductor technology.

2.2 Numerical Calculation
There are several ways to numerically calculate the result of Eq. (2). The direct calculations
consist of the Abbe and the transmission cross coefficient (TCC) approaches.24,25,27 The former
approach traces each illumination point source and incoherently adds up the intensities. The latter
approach calculates the transmission cross coefficient (TCC) matrix in advance. The TCC matrix
is the integral of the product of the illumination distribution, pupil function, and the complex
conjugate of the pupil function, which is shifted by the incident wave vector. The advantage of
the TCC approach is that the TCC needs to be calculated only once after fixing the illumination
and the pupil function. Therefore, this method is very suitable for varied mask layout during each
simulation. However, direct computation is very time consuming, due to the deep loops of FT.

Another approach is to diagonize the TCC matrix in the ~k space or the ~x space to get the eigen-
values and eigenfunctions. The final aerial image intensity can be obtained by summing the
convolutions of the eigenfunction and mask with multiplying the eigenvalues. This leads to the
sum of coherence system (SOCS) method.25,27 It is most widely adopted in commercial software
packages, especially for the OPC software.

2.3 Fourier Transform and Fast Fourier Transform
The FT and inverse FT of M and A are as follows:

EQ-TARGET;temp:intralink-;e007;117;262Aðkx; kyÞ ¼
Z

∞

−∞
Mðx; yÞe−2πiðkxxþkyyÞdx dy Mðx; yÞ ¼

Z
∞

−∞
Aðkx; kyÞe2πiðkxxþkyyÞdkx dky: (7)

The FFT is a well-developed methodology for quick evaluation of discrete FT. Since
invented28 in 1965, the scheme has been implemented in many applications and with several
representations.29 The basic and original algorithm uses radix-2. Equation (6) shows the discrete
FT pair

EQ-TARGET;temp:intralink-;e008;117;178Aðp; qÞ ¼
XN−1

m¼0;n¼0

Mðm; nÞe−2πiðpmþqnÞ
N Mðm; nÞ ¼

XN−1

p¼0;q¼0

Aðp; qÞe2πiðpmþqnÞ
N ; (8)

where Aðp; qÞ and Mðm; nÞ form a discrete FT and inverse-FT pair; p, q, m, n, and N are inte-
gers. If N is a number of powers of 2,N ¼ 2r, in Eq. (8), one of the series can be divided into two
parts, with even and odd order components. We use the one-dimensional (1-D) case for con-
venience of illustration:
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EQ-TARGET;temp:intralink-;e009;114;736

AðpÞ ¼
XN−1

n¼0

MðnÞe−2πipn∕N ¼
XN2−1
n¼0

Mð2nÞe−2πipð2nÞ∕N þ
XN2−1
n¼0

Mð2nþ 1Þe−2πipð2nþ1Þ∕N

¼
XN2−1
n¼0

Mð2nÞe−2πipð2nÞ∕N þ e−2πip∕N
XN2−1
n¼0

Mð2nþ 1Þe−2πipð2nÞ∕N ¼ C2np
N∕2 þ e−2πip∕ND2np

N∕2;

(9)

where C2np
N∕2 and D2np

N∕2 are two sub-series of AðpÞ. Based on Eq. (8), we can derive Aðpþ N∕2Þ
by substituting p with pþ N∕2 and remember that p and pþ N∕2 are both integers:

EQ-TARGET;temp:intralink-;e010;114;615A

�
pþ N

2

�
¼ C2np

N∕2 − e−2πip∕ND2np
N∕2: (10)

Equation (8) shows that it can save half of the computation. This is because when AðpÞ is
calculated, Aðpþ N∕2Þ is known by using Eq. (10). If N is a number of powers of 2, the pro-
cedure can be iteratively executed, until only two terms left. If an FT needs N × N computations,
the FFT can reduce the computations to N log2 N.

To directly calculate the aerial image intensity distribution of Eq. (2), when we set 64 pixels
in 1-D, it needs 644 computations to calculate the two-dimensional (2-D) mask spectrum plus 646

computations for the final aerial image intensity. An extra 642 computations is needed for scan-
ning the illumination. It is an enormous task, if no other algorithm is used to boost up the com-
putation. This paper uses the FFT to compute the aerial image, as an in-house development
engine for research purpose at the expense of a slight loss of accuracy. When the wavelength
is not an integer of the powers of 2, it is scaled to such an integer to enable FFT, then scaled back
to the original value after all the operations in FFT and inverse FFT. This procedure induced the
aforementioned slight loss of accuracy. For schools or research organizations with limited re-
source to purchase speedy computation equipment or to access industrial simulation packages,
this paper provides a powerful algorithm to convert the traditional FT to FFT to save the enor-
mous computational efforts.

2.4 Fourier Transformation in Summation Form
It is advantageous to convert the FT of the integral form to the summation form. We use the 1-D

case for the mask distribution Mð~xÞ and the spatial frequency spectrum Að~kÞ to demonstrate our
methodology:

EQ-TARGET;temp:intralink-;e011;114;321Að~kÞ ¼
Z

∞

−∞
Mð~xÞe−2πið~k·~xÞd~x Mð~xÞ ¼

Z
∞

−∞
Að~kÞe2πið~k·~xÞd~k: (11)

We convert Eq. (11) into the summation form with discrete sampling

EQ-TARGET;temp:intralink-;e012;114;273AðkÞ ¼
X∞
x¼−∞

MðxÞe−2πi
λ ðkxxÞ MðxÞ ¼

X∞
kx¼−∞

AðkÞe2πi
λ ðkxxÞ: (12)

Equation (6) cannot be directly used to calculate Eq. (12) for the following two reasons.
First, the summation limit of Eq. (8) is N, whereas the summation limit of Eq. (12) is infinite.
Second, the Fourier pair of Eq. (8) is symmetrical, but those are not symmetrical of Eq. (12).
Because the clear-tone masks, transparent patterns and opaque background, are mostly used for
EUV lithography and the pupil function to cut off high-order frequencies is multiplied to
Eq. (12), the infinity summation limit in Eq. (12) can be replaced by the finite range of interest.
On the other hand, the sampling of kx and x is very asymmetrical. For ArF exposure tools, the
exposure wavelength λ is 193 nm. When we set the sampling pixel number to 64 and the pixel
size to 25 nm, the sampling range in spatial coordinate x is 1600 nm. In the k space, the kx, the
direction component of wave vector with wavelength λ separated, scan range is normally �2 by
considering the maximum NA and illumination partial coherence parameter, both are �1. But,
the scan variables m; n and p; q in Eq. (7) are integers ranging from 0 to N − 1, which are sym-
metrical. More over, the challenging part to use FFT to boost the computation speed for this
system is that λ is 193, definitely not in powers of 2. However, Eq. (12) can be converted to
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the format of Eq. (8). Let us use 25 nm for the sampling interval Δx; 4
64
for Δkx and 193 nm for λ

to substitute into the first part of Eq. (12), we obtain Eq. (13) with pixel number 64:

EQ-TARGET;temp:intralink-;e013;117;711AðrΔkxÞ ¼
X
m

MðmΔxÞe−2πi 1
123.52

ðrmÞ: (13)

Now, r and m are both integers ranging from 1 to 64. Equation (13) is the same format
as Eq. (8).

Consider two masks,MðxÞ andM 0ðx 0Þ, illuminated with wavelengths λ and N, respectively.
If these two systems can produce the same mask diffraction spectrum AðkÞ, what is the relation-
ship between MðxÞ and M 0ðx 0Þ? In the following, we omit the �∞ limits in the integral for
clarity:

EQ-TARGET;temp:intralink-;e014a;117;603AðkÞ ¼
Z

MðxÞe−2πi1λðkxxÞdx; (14a)

EQ-TARGET;temp:intralink-;e014b;117;556¼
Z

M 0ðx 0Þe−2πi1Nðkxx 0Þdx 0: (14b)

With the inverse Fourier transform (FT), we can get M 0ðx 0Þ with Eq. (14)

EQ-TARGET;temp:intralink-;e015;117;526M 0ðx 0Þ ¼
Z

AðkÞe2πi1Nðkxx 0Þdkx: (15)

By substituting AðkÞ in Eq. (14a) into Eq. (15), we obtain the relationship between M 0ðx 0Þ
and MðxÞ:

EQ-TARGET;temp:intralink-;e016;117;466M 0ðx 0Þ ¼
Z

AðkÞe2πi1Nðkxx 0Þdkx ¼
Z �Z

MðxÞe−2πi1λðkxxÞdx
�
e2πi

1
Nðkxx 0Þdkx: (16)

After changing the integral order of dkx and dx, Eq. (15) becomes

EQ-TARGET;temp:intralink-;e017;117;416M 0ðx 0Þ ¼
Z �Z

e−2πið
x
λ−

x 0
N Þkxdkx

�
MðxÞdx ¼

Z
δ

�
x
λ
−
x 0

N

�
MðxÞdx ¼ CM

�
λx 0

N

�
; (17)

where δðxÞ is the delta function. Equation (15) indicates that the two masks differ by a scaling
factor λ

N and an intensity proportional constant C.
Foregoing is a basic concept of diffraction physics. Consider the double-slit diffraction con-

sisting of the slit distance d, wavelength λ and the diffraction angle φ as shown in Fig. 1, the
diffraction equation is

Fig. 1 The double-slit diffraction shows the scaled wavelength and slit geometry to produce the
same diffraction spectrum.
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EQ-TARGET;temp:intralink-;e018;114;736

2d
λ

¼ n
sin φ

: (18)

The right side of Eq. (18) shows the mask diffraction spectrum. To maintain the same mask
spectrum, the slit distance should be scaled with the wavelength used. Figure 1 shows the scaling
of the double slit to produce an identical diffraction spectrum.

In the same way, we now check the image formation after obtaining the mask spectrum. If
the same mask spectrum AðkÞ and pupil function PðkÞ form the image with different wavelengths
and spatial dimensions as shown in Eq. (19), what is the relationship between the image ampli-
tude distribution EðxÞ and E 0ðx 0Þ?

EQ-TARGET;temp:intralink-;e019;114;621EðxÞ ¼
Z

PðkÞAðkÞe2πi1λðkxxÞdkx E 0ðx 0Þ ¼
Z

PðkÞAðkÞe2πi 1Nðkxx 0Þdkx: (19)

Inversing the second part of Eq. (19), we get

EQ-TARGET;temp:intralink-;e020;114;573PðkÞAðkÞ ¼
Z

E 0ðx 0Þe−2πi1Nðkxx 0Þdx 0: (20)

Substituting Eq. (20) into the first part of Eq. (19), we get

EQ-TARGET;temp:intralink-;e021;114;525EðxÞ ¼
Z �Z

E 0ðx 0Þe−2πi 1Nðkxx 0Þdx 0
�
e2πi

1
λðkxxÞdkx: (21)

Following the same procedure in the derivation of Eq. (17), we perform the integration of
dkx before the integration of dx 0 in Eq. (21), resulting in

EQ-TARGET;temp:intralink-;e022;114;463EðxÞ ¼
Z �Z

e
−2πi

�
x 0
N−

x
λ

�
kx
dkx

�
E 0ðx 0Þdx 0 ¼

Z
δ

�
x 0

N
−
x
λ

�
E 0ðx 0Þdx 0 ¼ 1

C
E 0

�
Nx
λ

�
: (22)

By squaring E in Eq. (22), the image intensity distribution for wavelength λ is the same as
what we get from wavelength N, except for a scaling factor, which is the reciprocal of Eq. (17).
The intensity proportional constant C is ðNλ Þ2, which will be discussed later. In this paper, the
traditional FT can be converted to the discrete FT format in Eq. (12). The discrete FT for mask
diffraction spectrum obtained is then calculated by FFTwith the mask dimension scaled based on
the wavelength ratio from Eq. (17). The mask spectrum obtained with scaled mask is used to
calculate the image amplitude by FFTand this amplitude is finally scaled back to the actual image
amplitude based on Eq. (22).

3 Simulation

3.1 Simulation Flow
This paper uses Matlab®, which is popular and commercially available, as the simulation devel-
opment platform. The simulation flow aims to approach the conventional FTwith the FFT format
and algorithm. There are three key steps for the simulation.

First step: Pick N

Set pixel number in 1-D as 64; wavelength, 193 nm; Δx, 25 nm; and Δkx, 4
64
. The number 4

is the full range of the k value. With normally incident illumination, k ranges from −1 to þ1.
With off-axis illumination in both directions, the full range of k is now from −2 to þ2. From
Eq. (13), 2πi 1λ ðrΔxÞðmΔkxÞ ¼ 2πi rm

123.52
¼ 2πi rmβ , pick the nearest integer of β that is the powers

of 2. In this case, set N to 128.

Second step: Scale the mask

From the first step, the scaling factor is ε ¼ N
β ¼ 128

123.52
. The mask mð~xÞ is scaled up with ε.

Because the total pixel number of the mask distribution is 64 × 64, but N is 128, we need to pad
zeros to match the row and column elements of the mask matrix to 128 × 128. Now, the new
mask matrix is ready for FFT.
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Third step: Scale the image

We use the mask spectrum Að~kÞ, from the FFT of the scaled mask M 0ð ~x 0Þ, to execute the

inverse-FFT for the image amplitude distribution E 0ð ~x 0Þ. The image E 0ð ~x 0Þ is scaled with the
scaling factor 1

ε to get the final image Eð~xÞ.
Figure 2 shows the complete simulation flow, including conventional FT and the wave-

length-scaling FFT flows for comparison. The conventional flow follows the FT and inverse-
FT based on Eq. (2), and the wavelength-scaling FFT includes the following:

(a) Scale up the original mask Mð~xÞ to the new mask M 0ð ~x 0Þ based on the first and sec-
ond steps.

(b) Execute FFT to M 0ð ~x 0Þ and obtain the mask spectrum Að~kÞ.
(c) Multiply Að~kÞ with pupil function Pð~kÞ and execute inverse-FFT to get the image ampli-

tude E 0ð ~x 0Þ.
(d) Scale back the intensity E 0ð ~x 0Þ to Eð~xÞ based on the third step.

Although there are two more steps for the new algorithm, the computation speed is much
faster than the conventional method.

3.2 Simulation Results
Two cases are used to verify the simulation, a line-and-space pattern and a hole pattern. The
critical dimensions and simulation conditions are listed in Table 1.

We use 193-nm wavelength, 64 pixels in 1-D, 4
64

Δkx pixel size, 25-nm Δx. The resulting
artificial wavelength for the FFT. Figure 3 shows the simulation results, including the original
mask, the mask after scaling, the comparison of the 2-D intensity contours and the 1-D intensity
cutlines.

The comparison of the simulation results, shown in Fig. 3, consists of the 2-D contours and
the 1-D intensity cut lines, evaluated with conventional FT and the wavelength-scaled FFT. They
are almost indistinguishable. There is only a slight deviation at the intensity peaks, which is not
of the highest interest for lithography. The deviations are mostly from the grid snapping or the

Fig. 2 The simulation flow for conventional FT and wavelength-scaling FFT, with (a) the original
mask, (b) the scaled mask, (c) the mask diffraction spectrum, (d) the aerial image before scaling,
and (e) the final aerial image after scaling.

Table 1 The simulation condition of (a) hole case and (b) line/space case.

(a) Hole case (b) Line/space case

Layout condition Hole size 150 nm, hole pitch
425 nm, Fig. 3(a)

Line size 100 nm, line pitch
225 nm, Fig. 3(b)

Optical condition λ ¼ 193 nm, NA ¼ 0.5, σ ¼ 0.8 λ ¼ 193 nm, NA ¼ 0.7, σ ¼ 0.8
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resolution of the mask governed by the number of pixels. The number of pixels of these sim-
ulations, including the mask, is 64 × 64 and the scaling factor ε is 1.0363. The resolution cannot
faithfully reflect the accuracy of the scaling factor during the mask scale up. For example, the
mask width of the simulation case in Table 1(b) is 100 nm and the scaling factor ε is 1.03463. The
mask width after scaling is about 103.46 nm but the pixel size is 25 nm for the mask. The mask
size can only be 100 or 125 nm. To reduce the error, the mask edge was smoothened out with the
bilinear interpolation, the transmission becomes not exactly 0 or 1 at the edge of a binary mask.
Figure 4 shows the mask intensity distribution after the scaling in contrast to the original binary
mask. It is relatively easy to increase the number of pixels to enhance the resolution for the new
method. However, it is prohibitive to compare between FT and wavelength-scaled FFT, because
the deep loop of conventional FT takes too long to complete, especially when the number of
pixels is larger than 100 in each dimension. Table 2 lists the speed and intensity error evaluated
with conventional FT and wavelength-scaled FFT for cases (a) and (b). The intensity error here is
defined by comparing the integrated intensity under the cut line of the FT and wavelength-FFT,
the last part of Fig. 3.

For the real pupil function P 0, pupil function with aberrated wave front and the Zernike
coefficient need to be scaled with the new algorithm. Take Z3, defocus, as an example19,24

Fig. 3 The simulation results of (a) hole patterns and (b) line and space patterns. FT, conventional
Fourier transform; FFT, fast Fourier transform. The intensity cut line is the horizontal line at the
center of the 2-D contour.

Fig. 4 (a) The original binary mask with transmission 1 and 0. (b) The scaled mask with the trans-
mission approximated by bilinear interpolation.
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EQ-TARGET;temp:intralink-;e023;117;615Z3 ¼ Δδ
NA2

4λ
; (23)

EQ-TARGET;temp:intralink-;e024;117;573F3 ¼ 2R2 − 1; (24)

EQ-TARGET;temp:intralink-;e025;117;555R ¼ λ

NA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; (25)

where Δδ is the focus shift. For the conventional FT, the aerial image intensity can be calculated
by replacing the ideal pupil function P in Eq. (2) with the real pupil function P 0 in Eq. (5) and the
Zernike coefficient Z3, polynomial F3, respectively, in Eqs. (23) and (24). On the other hand, for
the wavelength scaling FFT, Eq. (22) is still valid. But, it needs to scale the Zernike coefficient Z3

to Z 0
3, with Z 0

3 ¼ Z3∕ε. This scaling for the wavelength-FFT calculation of the defocus image
intensity matches well with the result of FT.

The computation time of the wavelength-scaling FFT method and that of the conventional
FT are listed in Table 2. Although there are two extra mask scaling and image amplitude scaling
steps, the computation time of the new method way exceeds expectation. In theory, with 64 ×
64 pixels for the 2-D map, mask or intensity, it needs 644 computations for the conventional FT.
If converted to the wavelength scaled FFT, the computations become ð64 log2 64Þ × ð64 log2 64Þ.
Roughly, it is about 100× runtime saving. There are two major portions for the computation
depicted in Fig. 2. Those are step A to C for the first portion and steps C to E for the second
portion. For the first portion computation, it is just FT of the mask. It takes 2.7 s for the conven-
tional FT, whereas wavelength FFTonly takes 0.025 s, although with one additional step to scale
up the mask. It is roughly 108× faster for the new algorithm. For the second portion computation,
it needs to scan the whole illumination to sum up the intensities originated from the individual
illumination pixel. The inverse FT is executed in this portion. In the FT method, the computation
time is just 130 × 2.7 and 250 × 2.7 s for the two illumination settings involved in the two cases
listed in Table 1. On the other hand, during the illumination scanning, the repeated computation
quickly drops from 0.025 s to 5 × 10−4 s for the wavelength-scaling FFT. The overall runtime
becomes 130 × 5 × 10−4 and 250 × 5 × 10−4 plus the overhead runtime for the new algorithm. It
is possibly due to the new method using very little deep-loop computations with only matrix
operations and Matlab® built-in functions, such as fft2, ifft2, fftshift, ifftshift. . . In conclusion,
the conversion from FT to FFT saves ∼100× runtime. And, because of the coding efficiency of
matrix operation, extra 40× to 50× runtime can be saved. It is an extra benefit to convert the
coding with matrix operations.

From Table 2, the simulation speed is improved by 4000× to 5000× with the new wave-
length-scaled FFT method. It improves the simulation speed at the expense of intensity deviation
of the order of 3%. The proportional constants in Eqs. (17) and (22) can be derived by consid-
ering the consistency of the flux passing through the mask per unit area. Since the mask was
scaled with ε in 1-D, the ratio of the total transparent area in the mask is increased by ε.2 To keep
the mask spectrum consistent after the mask scaling, the mask transmittance after scaling is nor-
malized by 1

ε2
. In the same way, we can normalize the final aerial image intensity. Once the nor-

malization constants were fixed, we need to calibrate the results of wavelength-scaled FFT with
those of conventional FT only once.

Table 2 Comparison of simulation results between the conventional FT and the scaled-FFT
methods.

(a) Hole case (b) Line and space case

Execution
time (s)

Conventional FT Wavelength-scaling FFT Conventional FT Wavelength-scaling FFT

360 0.077 690 0.16

Intensity error 2.85% 3.2%
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4 Conclusion
This paper reports a new methodology that converts the aerial image calculation from the time-
consuming traditional method in deep loops to a 4000× to 5000× improvement in computing
speed, at the expense of a 2% to 3% intensity error due to grid snapping. The performance of the
new algorithm was tested with several cases and the results with the improvement and error are
consistent. Coding is very easy and straightforward on popularly commercially available plat-
forms. Although there are also methodologies that can greatly save the computation time, such as
the widely used SOCS, the method reported in this paper is more straightforward and can be
easily adopted. SOCS needs to setup and solve the eigenvalues and eigenfunctions, whenever a
new illumination or pupil function is adopted. This method only needs to set up the converting
pixel and scaling factor once for all. It is very suitable to be adopted as the running engine of
optimization problems. The potential of using this method for lithography process development
is expected to be high.
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