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Abstract. The rapid, accurate, and automated extraction of surface water is highly important
for conducting reliable and necessary surface water monitoring endeavors. Classification meth-
ods commonly exhibit high precision but also have a low degree of automation or narrow scope
of application; commonly used water index methods are highly efficient, but they easily mistake
other targets with similar spectral characteristics for surface water. Simultaneously achieving
precision, efficiency, and automation within a single method is a challenge. To address these
problems, we simplify the normalized different water index (NDWI) to a band ratio index
and traverse the neighborhood of the extreme in the histogram to determine two peaks and
one trough between the peaks in the two-mode method, and we then compare the middle
value of the two peaks with the value of the trough to confirm the threshold of the surface
water. We use the modified two-mode method to extract Poyang Lake from four Chinese
Gaofen (GF)-1 remote sensing images corresponding to different seasons, and then compare
the results with those obtained by the NDWI index and the maximization of interclass variance
(OTSU) method. The comparison shows that our method has higher and more stable accuracy,
especially during the drought period for Poyang Lake. However, polluted water, narrow rivers,
bridges, and residential areas along the lake are sometimes mistakenly extracted. Finally, the
advantages and prospects of the proposed method are discussed. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.JRS.13.022003]
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1 Introduction

Surface water resources, including streams, canals, ponds, lakes, and reservoirs, are invaluable
and necessary for human survival.1,2 Land surface water plays an important role in global bio-
geochemical cycles; moreover, the extent of water bodies on land is affected by climate change
and human activities, thereby affecting the climate, biological diversity, and human well-
being.3,4 Changes in the characteristics of land surface water bodies may result in the onset
of severe disasters, such as flooding, droughts, and even outbreaks of waterborne diseases,
all of which have consequences for the safety of human life and property.5 In Australia, severe
flooding in late 2010 and early 2011 caused billions of dollars’ worth of damage and many
deaths.6 In the spring of 2011, the combined area of Poyang Lake and Dongting Lake in
China was reduced by approximately two-thirds because of drought; as a consequence, drinking
water was scarce for both humans and animals, the aquaculture industries suffered substantial
losses, and the local ecological environment was affected. Accordingly, the accurate and timely
mapping of surface water bodies to describe their temporal and spatial variations is important for
the creation of effective policies, and for avoiding the loss of human life and property through
disaster monitoring endeavors.7 Additionally, water extraction is critically important in various
scientific disciplines, including research on assessments of present and future water resources,
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climate models, agricultural suitability, river dynamics, wetland inventories, watershed analyses,
surface water surveys and management, flood mapping, and environmental monitoring.8–11

Due to its wide monitoring range, rapid update speed, and potential to acquire vast amounts
of information, satellite remote sensing represents one of the most practical approaches
employed to determine the spatial and temporal patterns of inland water bodies.4,12 Satellite-
based remote sensing imagery is able to provide an aerial view of ongoing Earth surface proc-
esses at multiple scales to address the intricate nature of surface water.3,5 The optical sensor on
board the Gaofen (GF)-1 satellite, which is one of the most widely used platforms in China due
to its high resolution (2, 8, and 16 m), short period (4 days), and large sensor width (800 km),
represents an ideal new data source for water extraction.

Because water is liquid at ordinary temperatures, different geographical environments host
different forms of water. Different climates and human activities also cause variability in water
quality, due to heterogeneity in the color and turbidity of water bodies on different land types.
Moreover, the intersection of wetlands results in a morphology consisting of mixed pixels in
images, which makes it difficult to define the boundaries of the individual water bodies.
Sources of noise such as clouds and shadows can also cause confusion between water surfaces
and the background topography. In addition, satellite sensors also allow the properties of water to
change among different types of images. Ultimately, many factors can cause different water
bodies to display different properties; consequently, describing all of the properties of a single
water body through the application of a single method can be arduous, and thus, numerous differ-
ent algorithms are utilized to different degrees in studies of the nature of the same water body. To
date, many algorithms have been proposed to identify water bodies with remote sensing
imagery.5 Existing water extraction methods using remote sensing data can be summarized
in three basic types: (1) spectral bands, (2) water indices, and (3) classification.2 However, com-
binations of these methods are often used to improve the accuracy of water extraction
results.4,11,13–15

Spectral band techniques16–19 are usually employed to extract water bodies by choosing
thresholds of the band intensity that spatially correspond to the land–water interface.4 This
approach is easy to implement and is less computationally time-consuming;20 however, it is
restricted by the abundance of information related to shadows, clouds, and buildings in the spec-
tral bands of interest.21 Therefore, the more pressing difficulty is the selection of the correct
bands and appropriate thresholds.

Water indices use algebraic operations involving two or more spectral bands to enhance the
differences between water bodies and other objects.2 To date, the normalized difference water
index (NDWI),22 modified NDWI (MNDWI),23 automated water extraction index,13 and WI24

have each been widely used to extract water bodies. All of these water indices allow water pixels
to be classified priorities.25 These index methods are capable of revealing some general macro-
scopic characteristics of water bodies, and they have the same advantages as spectral band meth-
ods insomuch that they are easy to operate and exhibit a high efficiency. Thus, index methods are
widely used to extract large bodies of water, thereby attracting more scholars to conduct con-
tinuous and in-depth research on the extraction of water bodies using this approach. However,
despite its numerous benefits, index techniques do suffer from a few limitations, including a band
dependency, restricting the application of this method to only specific bands that are not pos-
sessed by some remote sensing images.26 In addition, the lack of a stable threshold may cause the
classification to be relatively time-consuming and lead to a subjective threshold choice, which
could also affect the overall accuracy.13

Classification methods include both supervised and unsupervised classification.27 In the lat-
ter, pixels are grouped based on the reflectance properties of pixels, and the created groups are
called “clusters;” the former is performed by selecting representative samples for each class in
the image, and the objective classification is based on spectral signatures defined by the user.28

The most commonly used supervised classifications include the support vector machine,29 maxi-
mum likelihood,30 decision tree,31 random forest,32 and neural network classification33 tech-
niques, and the most common unsupervised classification methods include the K-means
clustering34 and ISODATA classification35 approaches. In addition to the band intensity,
these methods can use more information, such as textural and multiband data. In some specific
application scenarios, classification methods can obtain higher accuracies than either spectral
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band or WI methods, and they are more suitable for high-resolution images with an abundance of
spectral information. However, these methods are more complex than the other two approaches
and are often designed for a specific problem. While they are more precise, existing ground
reference datasets are required, thereby restricting these methods from being applied over
large study regions.19

Because the different environments that surround water bodies are complicated and different
terrains have substantial influences on the spectral characteristics of water, a single method can-
not be employed to universally address all types of water bodies, and therefore, it is difficult to
simultaneously guarantee efficiency, precision, and automation. Accordingly, in this paper, we
simplify the NDWI to a simpler band ratio to extract the common characteristics of surface water
bodies, thereby reducing the probability of extraction of nonwater targets. We further expand the
definition of an extreme value to design an automated method for selecting the spectral thresh-
old. According to the characteristics of the water body in the ratio band, we improve the two-
mode method to select the threshold, improving the accuracy of water extraction. Ultimately, we
propose the method for extracting Poyang Lake by designing a band ratio that imitates the NDWI
to enhance water information and create an automated extend neighborhood algorithm using the
two-mode method to calculate extreme values and obtain spectral thresholds. We then use the
improved method to accurately and quickly extract Poyang Lake from four images correspond-
ing to four seasons, and the results are compared with the NDWI index and the maximum
between-classes variance algorithm maximization of interclass variance (OTSU).36 This experi-
ment confirms that the proposed method is superior to and more stable than the above two meth-
ods, especially in areas of great changes in the water surface.

2 Study Area and Materials

2.1 Study Area

Poyang Lake (28°22′ to 29°45′N, 115°47′ to 116°45′E), which is the largest freshwater lake and
river-communicating lake in China, is located in the northern part of Jiangxi Province along the
southern bank of the middle and lower reaches of the Yangtze River. Poyang Lake is notably
complex; furthermore, the annual water level changes greatly, such that the water area during the
wet season is >22 times greater than that during the drought season. Due to severe water-level
fluctuations throughout Poyang Lake, a typical freshwater lake landscape appears during the
flooding season, whereas separate river, butterfly water, wetlands, swamps, and other diverse
landscapes are exposed during the drought season. Large areas of grassland and beaches are
widely distributed throughout the basin, and many towns with extensive farmland, as well
as forests and thousands of small lakes, are situated along the coastline. Poyang Lake conse-
quently plays an important role in regulating flooding and protecting biodiversity within the
Yangtze River Basin, maintaining the local and Chinese ecological security, ensuring regional
economic development, and protecting various natural resources. (Fig. 1)

2.2 Remote Sensing Data

The GF-1 satellite (Table 1), which was launched on April 26, 2013, is the first satellite to be
deployed within the Chinese High-Resolution Earth Observation System. The GF-1 satellite is
equipped with one 2-m-resolution panchromatic sensor and one 8-m-resolution multispectral
sensor. It also has four 16-m-resolution wide-field-of-view (WFV) multispectral sensors. We
select one image from each season in November 2016 to July 2017 (Table 2) and research
the accuracy of the method by extracting Poyang Lake in different periods.

3 Methods

The key objective of water extraction methods, which are usually used to identify water bodies
within remote sensing images, is to discriminate water bodies from land and vegetative surfaces.
The water extraction method proposed in this study includes the following steps: (1) performing
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image preprocessing, (2) correcting the image by the internal average relative reflection (IARR)
method, (3) calculating the green/near infrared (NIR) ratio band, (4) computing the histogram of
the band ratio, (5) using the cubic spline method to smooth the histogram, (6) obtaining the
threshold by the modified two-mode method, (7) conducting threshold segmentation, and

Table 1 The main characteristics of the GF-1 satellite imagery.

Parameter 2/8 m 16 m

Spatial resolution Panchromatic 2 m Multispectral 16 m
Multispectral 8 m

Spectral scope (μm) Panchromatic 0.45 to 0.90

Multispectral 0.45 to 0.52 Multispectral 0.45 to 0.52

0.52 to 0.59 0.52 to 0.59

0.63 to 0.69 0.63 to 0.69

0.77 to 0.89 0.77 to 0.89

Sensor width (km) 60 800

Revisit time (day) 4 4

Table 2 The information of downloaded GF-1 images.

Date Season Spatial resolution (m) Cloud cover (%)

November 4, 2016 Autumn/winter 16 4

January 21, 2017 Spring 16 1

April 30,2017 Spring/summer 16 2

July 24,2017 Summer 16 12

Fig. 1 Location of the study area.
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(8) mapping the surface water. Figure 2 shows the overall flowchart of the proposed method for
extracting the lake surface area.

3.1 Image Processing

The GF-1 data can be downloaded from the China Centre for Resources Satellite Data and
Application (CRESDA)37 as level 1 processed scenes that include spectral restorations and radi-
ation corrections. First, the image is corrected by the IARR method to eliminate the influences of
atmospheric radiation and some terrain,38 after which the relative reflectance of the image is
similar to the true reflectance:

EQ-TARGET;temp:intralink-;e001;116;383ρλ ¼
Rλ

Fλ
; (1)

where ρλ is the relative reflectivity, Rλ is the pixel value of the radiation, and Fλ is the average
spectral value of the whole image.

Geometric corrections are then applied to the image using a world map39 to retrieve fine
geometric results. Finally, the whole image is clipped to highlight the spectral characteristics
of Poyang Lake.

3.2 Analyzing the Spectral and Spatial Distribution Characteristics of Surface
Water

3.2.1 Spectral distribution characteristics of the Poyang Lake water body

Take the image from November 4, 2016, for research. According to the characteristics of Poyang
Lake and the surrounding objects in the GF-1 image, this paper categorizes the land surface into
six types: water bodies, clouds, shadows, mountains, residential area, and farmland. We select
typical samples among five types of ground objects, calculate the spectral luminance values in
each band, and compose spectral characteristic curves for the six types of objects as shown in
Fig. 3 to analyze the spectral characteristics of each type of ground object.

Based on the spectral characteristics of water (blue), clouds (black), shadows (purple), moun-
tains (brown), residential areas (red), and farmland (green) shown in Fig. 3, the reflectance of
water is clearly much smaller in the NIR band than in the other three bands, and it is obviously
different from those of other objects in the NIR band. Therefore, the NIR band can be utilized as
an important band for water extraction. In the NIR band, the reflectance of a shadow is lower
than that of a water body, and thus, it is easy to mistakenly extract shadows as water bodies;

Fig. 2 Flowchart showing the overall procedure of the methods proposed in this study.
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consequently, other bands must be combined with the NIR band to distinguish water from shad-
ows. These features provide an important basis for the extraction of the water information from
Poyang Lake and for the design of an appropriate WI.

3.2.2 Spatial distribution characteristics of Poyang Lake

The topography around the Poyang Lake Basin is very complex. Vegetation, farmlands, resi-
dential areas, mountains, and rounds are interlaced in the vicinity of the lake, and a number of
smaller lakes and rivers are scattered among the towns situated along the coastline. Poyang Lake
exhibits obvious seasonal variations in the form of morphological changes: vegetated and lower-
elevation areas are flooded during the wet period from April to September, when the variety of
smaller lakes are connected into one larger water body, while the water level drops from October
to March during the drought season, and when Poyang Lake is separated into discontinuous
surfaces and rivers.

3.3 Water Body Classification

In this paper, a histogram is calculated for the ratio band of the image, after which cubic spline
interpolation is employed to smooth the histogram, and then the frequencies of pixel values are
compared with those of adjacent neighborhood pixels to obtain the maximal and minimal values,
which are also the peaks and troughs of the histogram. Then, the two-mode method is used to
obtain the middle values of peaks, and the smaller of the two values, namely, the middle value
between two peaks and the value of the trough between two peaks, is selected as the threshold for
segmenting the image.

3.3.1 Determining the band ratio combination

The band ratio method is a mathematical model for recognizing water bodies through arithmetic
operations of the band, and the extraction of water information is directly realized by the thresh-
old. This method can suppress information related to various parameters such as the albedo and
terrain slope, thereby enhancing information concerning water bodies. To weaken the influences
of nonwater factors, such as vegetation and soil, McFeeters22 proposed the NDWI index, the
concept of which has been modified with regard to water extraction purposes, but its application
to water extraction in urban areas still includes many impurities. The definition of the NDWI is as
follows:

EQ-TARGET;temp:intralink-;e002;116;162NDWI ¼ Green − NIR

Green þ NIR
: (2)

The NDWI has poor extraction performance in urban areas, where it is easy to confuse water
with the shadows of mountains. We, therefore, simplify the NDWI to the ratio bands as Eq. (3) to
enhance water information, reduce the effects of mountain shadows, and decrease the errors in
urban water extraction. The proposed band ratio is defined as follows:

Fig. 3 Means of different objects in the study plots derived from the GF-1 image.
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EQ-TARGET;temp:intralink-;e003;116;576Ratio ¼ Green

NIR
: (3)

According to the features of the target image, six categories of surface features are analyzed:
water, clouds, shadows, mountains, residential areas, and farmland. The results of an analysis of
the spectral characteristics of these six features in the ratio band are shown in Fig. 4, in which the
band ratio of water is high. Furthermore, based on the statistical analysis for all samples, more
than 99.9% of the water in the samples is concentrated in areas where the band ratio is >1.56.
The value of the threshold is set as the Ratiothreshold; when the values of the pixels in the ratio
image are greater than Ratiothreshold, most of the nonwater bodies can be removed.

3.3.2 Cubic spline interpolation method for smoothing of the histogram

A histogram, which can reflect the statistical characteristics of a distribution in an image, rep-
resents a common method for researching the distributions of objects in remote sensing images.
Because the noise in the GF-1 image interferes with and reduces the accuracy of the extraction of
Poyang Lake, a cubic spline interpolation approach is used in this paper to smooth the histogram.

Let f, which is ðxi; yiÞ (i ¼ 1; 2; : : : ; n), be on a plane, and let πn: x1 < x2 < : : : < xn be a set
of discrete points. A function s is a cubic spline interpolation associated with f and πn if

(a) s ¼ yi;
(b) sðxÞ is a cubic polynomial on ðxi; xiþ1Þ for i ¼ 1; 2; : : : ; n;
(c) sðxiÞ ¼ fðxiÞ for i ¼ 0; 1; : : : ; n.

The two free parameters in a cubic spline interpolant can be variously assigned. Three
common strategies for this assignment procedure are described as follows.

Definition 1. Let s ¼ Nnf be the cubic spline interpolant to f prescribed by (a), (b), (c), and
(d1) s 00ðx1Þ ¼ s 00ðxnÞ ¼ 0.

Definition 2. Let s ¼ S 0
nf be the cubic spline interpolant to f prescribed by (a), (b), (c), and

(d2) s 0ðx1Þ ¼ f 0ðx1Þ, s 0ðx2Þ ¼ f 0ðx2Þ.
Definition 3. Let s ¼ Lnf be the cubic spline interpolant to f prescribed by (a), (b), (c), and

(d3) s 0ðx1Þ ¼ s 0ðxnÞ and s 00ðx1Þ ¼ s 00ðxnÞ.40

To determine SðxÞ, the cubic spline interpolant can be based on n interpolation conditions,
3n − 6 continuous conditions, and given boundary conditions. The first derivative or second-
order derivative of the nodes is then used. The results of the band ratio before and after the
cubic spline interpolation are shown in Fig. 5, respectively.

3.3.3 Automatic threshold selection algorithm for the two-mode method

A classification is essentially a clustering problem, and the number and shape of both peaks and
troughs of a histogram provide important information for the segmentation. In the two-mode
method,41 the image is considered to be composed of a target and a background with different
gray levels. The gray distribution curve of an image can be approximately considered a

Fig. 4 Spectral curves of all six types of surface features using the green/NIR band ratio.
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superposition of two normally distributed functions. The distributions of the two peaks represent
the most densely distributed gray values of the background and target objects, and the value of
the trough between those two peaks can be used as the threshold to segment the image. In prac-
tical applications, the object and the background are often not normally distributed in a histo-
gram, and thus, the middle value between two peaks also constitutes a segmentation method.

Let i be the number of bins of pixels and fðiÞ be the value of pixel frequency in the image.
Then, obtain fðiÞ compared with fði − 1Þ and fðiþ 1Þ: if fðiÞ is less than or equal to fðiþ 1Þ
and fði − 1Þ, then fðiÞ is the minimal value and the trough point; if fðiÞ is greater than or equal
to fðiþ 1Þ and fði − 1Þ, then fðiÞ is the maximal value and the peak point. The peak of the
expression function is

EQ-TARGET;temp:intralink-;e004;116;473pðiÞ ¼
�
1; fði − 1Þ ≤ fðiÞ and fðiÞ ≥ fðiþ 1Þ
0; others

; (4)

(and the trough of the expression function is

EQ-TARGET;temp:intralink-;e005;116;416bðiÞ ¼
�
1; fði − 1Þ ≥ fðiÞ and fðiÞ ≤ fðiþ 1Þ
0; others

; (5)

(where PðiÞ and bðiÞ are the values of peaks and troughs. After the calculation, there are many
peaks and troughs, and each peak represents a class of objects. To obtain the peaks of the back-
ground and object in addition to the trough between them, we add constraints based on the
definition of an extreme value to merge nonwater objects into the background until a histogram
is generated, which possesses two peaks separately corresponding to water and nonwater objects.

Accordingly, we expand the definitions of peaks and troughs. Compare fðiÞwith the adjacent
local neighborhood of fðsÞ, where s ¼ fi −m; i −mþ 1; : : : ; i − 2; i − 1; iþ 1; iþ
2; : : : ; iþm − 1; I þmg; the parameter m is the width of the adjacent local neighborhood
of fðiÞ. Let the minimum in fðsÞ be fmin and let the maximum be fmax: if fðiÞ is greater
than or equal to fmax, the i is the peak point; if fðiÞ is less than or equal to fmin, then i is
the trough point.42 The definitions of the functions PðiÞ and BðiÞ are as follows:

EQ-TARGET;temp:intralink-;e006;116;244PðiÞ ¼
�
1; fðiÞ ≥ fmax

0; fðiÞ < fmax
(6)

and

EQ-TARGET;temp:intralink-;e007;116;188BðiÞ ¼
�
1; fðiÞ ≤ fmin

0; fðiÞ > fmin
; (7)

where PðiÞ and BðiÞ are the values of peaks and troughs. The autoselection threshold algorithm
results for the band ratio are shown in Figs. 6 and 7, respectively. The value of m can be deter-
mined by the number of peaks and valleys and by the position of the valley. According to the
definition of the two-mode method, which requires two peaks corresponding individually to the
background and ground objects, there are only two peaks in the histogram and one trough
between those peaks. Therefore, the traverse method can be used to let the value of m gradually
increase from 0 to confirm where there are only two peaks and one trough between the peaks,

Fig. 5 Histogram of the band ratio (a) before and (b) after cubic spline interpolation.
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and the process continues until this is the case. As a result, the appropriate value of m is within a
set, and any value in the set is suitable. In this paper, the number of bins is 1000, the set of m
ranges from 90 to 113, and any number in this set can be suitable. The traverse process is shown
in Table 3.

Water is distributed in higher band ratios than the other nonwater features, and therefore, we
can choose the smaller value between the median value of two peaks and the trough between the
two peaks as the value of Ratiothreshold, which is defined as follows:

EQ-TARGET;temp:intralink-;e008;116;349Ratiothreshold ¼ min

�
B2;

P1þP2

2

�
; (8)

where P1 is the value of the first peak, P2 is the value of the second peak, P1þP2

2
is the median

value, B2 is the value of the trough between the two peaks, and P1 < B2 < P2. In this image, the

middle value is smaller, and Ratiothreshold ¼ fð94Þþfð400Þ
2

. When the ratio is greater than the
Ratiothreshold, the result is shown in Fig. 8(a).

4 Analysis of the Results

4.1 Comparisons and Analysis of Accuracy

The accuracy assessment is considered from two perspectives: (1) images in different seasons
for typical assessments of the two-mode method based on the automatic extended neighborhood
and (2) a comparison of the accuracies with different methods based on the extraction
results.43

The water information extracted by the modified two-mode (MTM) method is shown in
Figs. 8(a), 8(d), 8(g), and 8(j). The accuracy of the proposed method is compared with that
of two other methods, namely NDWI image extraction using the MTM method [Figs. 8(b),
8(e), 8(h), and 8(k)] and ratio image extraction using the OTSU method [Figs. 8(c), 8(f), 8(i),
and 8(l)].

Fig. 6 Comparison chart (a) before and (b) after using the neighborhood screening maximum.

Fig. 7 Comparison chart (a) before and (b) after using the neighborhood screening minimum.
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In each image, 500 random points of water bodies and 500 random points of nonwater are
selected as validation samples. The overall accuracy and kappa of different methods are calcu-
lated by the confusion matrix. The contrasting results of the three extraction methods with
respect to the overall accuracy and kappa are shown in Table 4 and Fig. 8, respectively.

The results show that the two-mode method based on the automatic extended neighborhood
can accurately extract the water body of Poyang Lake. In the wet season, the accuracy of the
NDWI index and the OTSU method is slightly lower than that of the MTM method, whereas in
the drought season, the precision is clearly lower than our method, and the OTSU method
extracts the whole image by mistake on January 21, 2017 [Fig. 8(f)]. This is because the

Table 3 The traverse process for the value of m.

M Detection results for the peaks ½pðiÞ� and troughs ½bðiÞ�
0 pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð424Þ f ð540Þ f ð650Þ f ð801Þ f ð941Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð415Þ f ð516Þ f ð635Þ f ð752Þ f ð928Þ f ð956Þ

[1,15] pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð650Þ f ð801Þ f ð941Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð415Þ f ð516Þ f ð635Þ f ð752Þ f ð928Þ f ð956Þ

[16,18] pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð650Þ f ð801Þ f ð941Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð516Þ f ð635Þ f ð752Þ f ð928Þ f ð956Þ

19 pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð650Þ f ð801Þ f ð941Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð516Þ f ð635Þ f ð752Þ f ð928Þ

20 pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð650Þ f ð801Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð516Þ f ð635Þ f ð752Þ f ð928Þ

21 pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð650Þ f ð801Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð516Þ f ð635Þ f ð752Þ

[22,23] pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð650Þ f ð801Þ f ð969Þ

bðiÞ f ð326Þ f ð363Þ f ð516Þ f ð752Þ

[24,32] pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð801Þ

bðiÞ f ð326Þ f ð363Þ f ð516Þ f ð752Þ

[33,34] pðiÞ f ð94Þ f ð344Þ f ð400Þ f ð540Þ f ð801Þ

bðiÞ f ð326Þ f ð516Þ f ð752Þ

[35,38] pðiÞ f ð94Þ f ð400Þ f ð540Þ f ð801Þ

bðiÞ f ð326Þ f ð516Þ f ð752Þ

39 pðiÞ f ð94Þ f ð400Þ f ð801Þ

bðiÞ f ð326Þ f ð516Þ f ð752Þ

[40,66] pðiÞ f ð94Þ f ð400Þ f ð801Þ

bðiÞ f ð326Þ f ð752Þ

[67,89] pðiÞ f ð94Þ f ð400Þ f ð801Þ

bðiÞ f ð326Þ

[90,113] pðiÞ f ð94Þ f ð400Þ

bðiÞ f ð326Þ
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Fig. 8 Comparison of classification results in Poyang Lake: (a), (d), (g), and (j) MTM classification
results with ratio band index on November 04, 2016, January 21, 2017, April 30, 2017, and July 24,
2017; (b), (e), (h), and (k) MTM classification results with NDWI index on November 04, 2016,
January 21, 2017, April 30, 2017, and July 24, 2017; (c), (f), (i), and (l) OTSU classification
results with ratio band index on November 04, 2016, January 21, 2017, April 30, 2017, and
July 24, 2017.

Zhang et al.: Using the modified two-mode method to identify. . .

Journal of Applied Remote Sensing 022003-11 Apr–Jun 2019 • Vol. 13(2)



area of Poyang Lake has been greatly reduced in the drought season, and the wetland has
increased, resulting in some wetlands being mistaken for water bodies because of mixed pixels.
In contrast, the accuracy of the MTM method is more stable.

4.2 Error Analysis

Although the proposed algorithm has a highly accurate extraction capacity, some water bodies
are still missed, and other nonwater bodies are mistakenly extracted. First, not all polluted lakes
[Fig. 9(a)] and narrow rivers [Fig. 9(b)] can be extracted. The MTM method is based on the
spectral value of water, and the substances within polluted lakes can change the reflectivity
of the water to be similar to the spectral characteristics of nonwater bodies. Therefore, polluted
water bodies cannot be extracted using only the band ratio approach at this time. In addition,
some rivers that are not >5 pixels wide cannot be extracted. When rivers are too narrow, the
pixels will be mixed on both sides of the rivers; this phenomenon also changes the values of the
bands over water. One way to resolve the above problem is to use an image with a higher res-
olution to extract water bodies.

Second, most bridges [Fig. 9(c)] across rivers and a few residential areas surrounding the lake
are easily mistaken, similar to the NDWI index. Both artificial objects [Fig. 9(d)] are mistakenly
extracted because of similar ratio band values. However, these errors can be eliminated with
various types of information, such as textural and shape parameters.

5 Discussion

In this paper, we correct the image by the IARR method to avoid invalid values (such as NaN) in
later operations. We then simplify the NDWI as a ratio band to decrease partial errors associated
with shadows and buildings, and we introduce the concept of the automatic extended neighbor-
hood based on the definition of the extreme value to improve the two-mode method to confirm
the peaks and troughs of the histogram. Next, based on the characteristics of the larger band ratio
value of the water body, we employ the smaller one between the median value of two peaks
and the value of the trough as the threshold of segmentation. Finally, we obtain the water
body classification results for Poyang Lake.

Table 4 A comparison of the accuracies with different water extraction methods.

Date Method Index Overall accuracy Kappa Area (km2)

November 4, 2016 MTM Ratio band 0.963 0.926 2358.01

MTM NDWI 0.947 0.894 2025.84

OTSU Ratio band 0.942 0.884 1991.10

January 21, 2017 MTM Ratio band 0.934 0.868 1567.26

MTM NDWI 0.84 0.68 1343.90

OTSU Ratio band 0.50 0 16301.17

April 30, 2017 MTM Ratio band 0.915 0.83 2872.10

MTM NDWI 0.886 0.772 2759.08

OTSU Ratio band 0.87 0.74 2728.00

July 24, 2017 MTM Ratio band 0.923 0.846 4076.66

MTM NDWI 0.924 0.848 4101.54

OTSU Ratio band 0.876 0.752 3913.73

Zhang et al.: Using the modified two-mode method to identify. . .

Journal of Applied Remote Sensing 022003-12 Apr–Jun 2019 • Vol. 13(2)



This method, which has broad potential applications, clearly achieves a unification of auto-
mation, high accuracy, and rapid extraction. The algorithm can determine the threshold of seg-
mentation without manual intervention. The IARR method is used to avoid the NAN error in
NDWI and improve accuracy. The cubic spline method is applied to smooth the histogram to
reduce accidental errors and to enhance noise immunities. In addition, the band ratio index imi-
tating NDWI is used to concentrate the main spectral characteristics of the water body at the high
value of the band so that the algorithm can quickly extract the target objects.

The key to establishing the threshold using this method is to traverse and confirm the neigh-
borhood of the pixel frequency to determine the location of two peaks and a trough. Compared
with region growth and other segmentation algorithms to traverse or iterate the pixels, this
method must only traverse the histogram, thus greatly reducing the computation. Moreover,
the method does not need to set the number of iterations or the threshold of termination
from experience, improving the automation of extraction. Furthermore, it is applicable to sep-
arate a single target gathered at one end of the band from other objects.

However, there are still parts with disadvantages similar to NDWI. Parts of resident areas near
the lake and bridges are mistakenly extracted because the building sites and water are both high
in the green band and low in the NIR band. Furthermore, the construction is not suppressed when
calculating the band ratio index. Moreover, some narrow rivers also cannot be accurately
extracted because of the presence of mixed pixels.

6 Conclusions

Because of the accuracies and efficiencies of traditional water extraction methods, we propose
a two-mode method based on the automatic extended neighborhood. A remote sensing image
can be divided into two layers, including the target and the background, and the segmentation
threshold for the target objects can be automatically obtained. This method can be employed to

Fig. 9 Mistaken extraction of water (a) polluted water, (b) narrow rivers, (c) bridges, and
(d) residential areas.
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automatically and accurately extract the water bodies of a study area in a very short time, and it is
suitable for the extraction of Poyang Lake and other lakes; therefore, the proposed technique can
satisfy the needs of water conservancy monitoring businesses. The method can also be applied to
images of other satellites for other classification purposes, such as flood monitoring, which need
to extract only one given class of target. Based on this method, we will continue to research the
classification of multiclass objects and the elimination of mistaken and erroneous extraction
results. The simplicity of the method in conjunction with its high accuracy and short operation
time make it a promising tool for remote sensing applications in the future.
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