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Abstract. Accurate characterization of atmospheric turbulence is useful for performance assessment of optical
systems operating in real environments and for designing systems to mitigate turbulence effects. Irradiance-
based techniques such as scintillometry, suffer from saturation, and hence commercial scintillometers have lim-
ited operational ranges. A method to estimate turbulence parameters, such as path weighted C2

n and Fried’s
coherence diameter r 0 from turbulence-induced random, differential motion of extended features in the time-
lapse imagery of a distant target is presented. Since the method is phase-based, it can be applied to longer
paths. It has an added advantage of remotely sensing turbulence without the need for deployment of sensors
at the target location. The approach uses a derived set of path weighting functions that drop to zero at both ends
of the imaging path, the peak location depending on the size of the imaging aperture, and the relative sizes and
separations of the features whose motions are being tracked. Using different sized features separated by differ-
ent amounts, a rich set of weighting functions can be obtained. These weighting functions can be linearly com-
bined to approximate a desired weighting function such as that of a scintillometer or that of r 0 in inhomogeneous
turbulence. The time-lapse measurements can thus mimic the measurements of a scintillometer or any other
instrument. Themethod is applied to images captured along two different paths, and the estimates are compared
to co-located scintillometer measurements. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.OE.57.10.104108]
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1 Introduction
Accurate characterization of atmospheric turbulence and its
effects is extremely important for performance evaluation of
optical systems operating in real environment and for design-
ing of systems to mitigate turbulence effects. Irradiance-
based methods such as the scintillation, detection, and rang-
ing technique have been used in the past by astronomers to
obtain a low-resolution vertical profile of turbulence.1,2 The
path-weighted refractive index structure constant C2

n is tradi-
tionally measured using scintillometers.3 However, irradi-
ance-based techniques are of limited use in the saturation
regime and hence are not suitable for measurements over
long paths through turbulence. Also direct point estimates
of C2

n that are derived from such intermediate quantities
as the velocity structure constant C2

v and the temperature
structure constant C2

T require measurements of wind speed
and temperature at high-temporal resolution.4 Use of these
methods requires physical sensors to be deployed in and
around the region of interest. Alternate techniques that
can provide reliable turbulence information over paths
through strong turbulence are being investigated.5 Meier
and Fiorino6 have demonstrated methods to extract turbu-
lence information from polar orbiting satellite data. A
phase-based technique built on a process known as the

difference in differential tilt variance was introduced by
Whiteley et al.7 The technique requires two receiver aper-
tures and an accompanying focal plane camera at one end
of the path and three point source beacons at the other
end. The apertures were used to observe either a single-
point source or two individual point sources. Since differen-
tial tilt measurements are phase related, conventional propa-
gation theory can be used even for strong turbulence paths
where the variance of irradiance saturates. Gladysz et al.8

measured turbulence strength over a horizontal path from
the differential angle of arrival fluctuations of an array of
light emitting diodes.

An imaging experiment was done at the Air Force
Institute of Technology (AFIT) in the summer of 2014 to
monitor the effects of atmosphere over a period of time.
A digital single-lens reflex camera fitted with a telephoto
lens was used to capture images of a hospital building
12.8 km away. The imaging path was almost horizontal,
with most of the path 60 m above the ground. Path-averaged
C2
n was estimated from turbulence-induced random motion

of different parts of the building.9,10 In this work, a scheme
to directly estimate turbulence parameters such as path-
weighted C2

n and Fried’s coherence diameter r0, from the dif-
ferential motion of target features is described. The differen-
tial mode of measurement cancels the effect of any common
mode disturbance such as platform vibrations. In addition to
being phase-based, this technique has the added advantage of
being able to remotely measure turbulence from a single
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location. Some commercially available systems estimate tur-
bulence by tracking differential motion of feature points on
the target.11 Tracking the motion of extended features on the
target rather than point features allows measurement of C2

n
over a longer range. In this paper, the differential technique
has been applied to images captured along two different
propagation paths.

The remainder of this paper consists of three sections:
methodology, results, and conclusions. Section 2 describes
the experimental configuration, derives the path weighting
functions that relate the turbulence to the differential tilt var-
iances, and demonstrates how a linear combination of multi-
ple weighting functions can be used to approximate a desired
weighting function, such as that of a scintillometer or that of
r0 in inhomogeneous turbulence. Section 3 discusses how
the ideas developed in Sec. 2 can be applied to actual exper-
imental imagery in order to obtain C2

n estimates. These esti-
mates are compared to scintillometer measurements taken
along the same path. A brief summary of the findings and
future research directions are given in Sec. 4.

2 Methodology

2.1 Time-Lapse Imaging Experiment

Two time-lapse imaging experiments were done over two
different ranges at different times of the year. In the first
experiment, conducted in February 2017, images of the
Dayton VA Medical Center were captured from a window
at University of Dayton’s (UD) Intelligent Optics Laboratory.
Figure 1 shows the layout and a ground elevation profile of
the 7-km path from the VA Medical Center to UD. Example
images are shown in Fig. 2. The images were captured and
saved every 40 s using a Manta G609 Allied Vision
Technologies camera with a pixel pitch of 4.54 μm, mounted
at the back of a 14-in. (35 cm) telescope with focal length of
3.91 m. The exposure time used was 10 ms. Turbulence was
estimated by measuring the motion of four patches, marked
as white circles in Fig. 2(a), each centered at one of the cor-
ners of the two windows in the right wing of the hospital.

A Scintec BLS 2000 scintillometer measured turbulence
along nearly the same path. The BLS transmitter was a floor
above the two tracked windows at the VA Medical Center
and can be seen as the bright source at the center of
Fig. 2(a).

Although the goal of the first experiment was to estimate
turbulence by looking at targets of opportunity, the second
experiment used specially designed targets over a much
shorter path close to the ground. The experiment was
conducted over 3 days in July 2017 at the Laser Experi-
mental Range at Wright Patterson Air Force Base, Ohio.12

The 1-km path was nearly horizontal over an asphalt runway
∼1.5 m above the ground. Targets were four posters with
white circles spray painted randomly on a black background.
The imaging system comprised a Lumenera camera (pixel
pitch 4.65 μm) and a Nikon lens with focal length
400 mm (system ƒ# 2.8). The targets were affixed to the
side of a trailer and images were captured every 10 s. A
BLS 900 scintillometer was used to monitor the same
path. Figures 3 and 4 show the experimental path and sample
images from July 18 and July 20, respectively. The exposure
time on the camera was set to 500 μs on July 18 and 5 ms on
July 20. The 5-ms exposure time caused the images taken
later in the day on July 20 to be badly saturated and unusable
for reliable turbulence estimation. Strong winds on July 18
blew away the target posters during the course of the experi-
ment, and turbulence was then estimated by tracking the dif-
ferential motion of four patches, each centered at one of the
corners of the trailer window.

The images were first cropped to isolate the region of
interest. In the VA Medical Center imaging experiment,
the region of interest was the right wing of the hospital build-
ing. The trailer was the region of interest for the runway
experiment. A reference image was chosen from the images
collected and a cross-correlation algorithm was used to esti-
mate the image shift between each image and the reference
image. A Gaussian window was applied to the images before
the cross-correlation algorithm was run. This reduced
the effects of the frame edges on the correlation result.

Fig. 1 Dayton VA Medical Center imaging path: (a) map of the path and (b) elevation profile. VA is to the
left and UD is to the right on the elevation plot.
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Fig. 2 Example images of the Dayton VA Medical Center captured on Feb 14, 2017: (a) early morning
image and (b) afternoon image. The patches tracked are marked as white circles in the lower right
of (a).

Fig. 3 The 1-km experimental path over the runway with camera and target locations shown.

Fig. 4 Example images from (a) July 18, 2017 and (b) July 20, 2017.
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A parabolic fit was applied to the correlation peak to provide
a subpixel estimate of the shift between the images. The cor-
relation with a reference image provided information about
slow image drift during the course of the day due to refractive
bending. This long-term drift information was used to adjust
the tracking window keeping it locked on to a feature
through the collection. The cross-correlation algorithm
was then applied to each image and its neighboring image
to estimate the random motion of the feature due to turbu-
lence. The shifts of two features were subtracted to get the
differential signal.

2.2 Path Weighting Functions for Differential Patch-
Averaged Tilt Variance

The z-tilt over an aperture of diameter D, when viewing
a source in the direction θ, can be expressed as13

EQ-TARGET;temp:intralink-;e001;63;571αðθÞ ¼ 32λ

π2D4

Z
drWðrÞrϕðr; θÞ; (1)

where λ is the wavelength, ϕðr; θÞ is the turbulence-induced
wavefront distortion at aperture coordinate r and

EQ-TARGET;temp:intralink-;e002;63;506WðrÞ ¼
�
1 jrj ≤ 0.5D
0 jrj > 0.5D

: (2)

The mean correlation between tilts observed at the aperture
due to two sources at viewing directions θ1 and θ2 can be
written as

EQ-TARGET;temp:intralink-;e003;63;428

hαðθ1Þ · αðθ2Þi ¼
�

32λ

π2D4

�
2
�ZZ

drdr 0WðrÞWðr 0Þr

· r 0ϕðr; θ1Þϕðr 0; θ2Þ
�
; (3)

where the angled brackets indicate ensemble averaging.
Interchanging the order of integration and ensemble aver-

aging results in

EQ-TARGET;temp:intralink-;e004;63;322

hαðθ1Þ · αðθ2Þi ¼
�

32λ

π2D4

�
2
ZZ

drdr 0WðrÞWðr 0Þr

· r 0hϕðr; θ1Þϕðr 0; θ2Þi: (4)

Since
RR

drdr 0WðrÞWðr 0Þr · r 0 ¼ 0, terms that are functions
of either r or r 0, and not both, can be added without changing
the result of the integration.

Hence, Eq. (4) becomes:

EQ-TARGET;temp:intralink-;e005;63;216

hαðθ1Þ · αðθ2Þi ¼
�
−
1

2

��
32λ

π2D4

�
2
ZZ

drdr 0WðrÞWðr 0Þr

· r 0Dϕðr − r 0; θ1 − θ2Þ; (5)

where Dϕðr − r 0; θ1 − θ2Þ ¼ h½ϕðr; θ1Þ − ϕðr 0; θ2Þ�2i is the
phase structure function.

For a spherical wave propagating through turbulence
characterized by the Kolmogorov power spectrum, the
wave structure function can be written as14

EQ-TARGET;temp:intralink-;e006;326;752

Dðr− r 0;θ1 − θ2Þ

¼ 2.91k2
Z

L

0

dzC2
nðzÞ

����ðr− r 0Þ
�
1−

z
L

	
þ zðθ1 − θ2Þ

����5∕3;
(6)

where k ¼ 2π∕λ is the wave number and L is the path length.
The receiver is located at z ¼ 0 and the source is located at
z ¼ L. Assuming that the phase structure function is approx-
imately equal to the wave structure function and substituting
Eq. (6) into Eq. (5):
EQ-TARGET;temp:intralink-;e007;326;627hαðθ1Þ ·αðθ2Þi

¼
�
−
2.91

2

��
64

πD4

�
2
Z

L

0

dzC2
nðzÞ

Z Z
drdr0WðrÞWðr0Þr ·r0

×
����ðr−r0Þ

�
1−

z
L

�
þzðθ1−θ2Þ

����5∕3: (7)

The integrations over r and r 0 can be done using techniques
outlined by Fried15 and Winick and Marquis.16 Applying
those techniques, Eq. (7) reduces to
EQ-TARGET;temp:intralink-;e008;326;504

hαðθ1Þ · αðθ2Þi ¼
�
−
2.91

2

��
16

π

�
2

D−1∕3
Z

L

0

dzC2
nðzÞ

×
Z

2π

0

dϑ

Z
1

0

du½ðu cos−1uÞ − u2ð3 − 2u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

×
�
u2
�
1 −

z
L

�
2

þ
�
z
D
jθ1 − θ2j

�
2

þ 2u

�
1 −

z
L

��
z
D
jθ1 − θ2j

�
cos ϑ

�
5∕6

: (8)

Each pixel in the time-lapse imagery corresponds to a patch
of finite size (∼8 mm for the VA imaging experiment and
∼1 cm for the runway experiment) not just a point on the
target. Hence the shift (or the tilt) measured from the
whole image, or even a pixel on the image is not tilt due
to a single-point source, but rather an average tilt due to sev-
eral incoherent point sources over a patch. Since a Gaussian
window is applied to the images before the cross correlation
is computed, to make the analysis consistent, the source
patch is modeled as the same Gaussian. The patch-averaged
tilt αp is defined as

EQ-TARGET;temp:intralink-;e009;326;253αp ¼
R
dθαðθÞPGðθÞR
dθPGðθÞ

; (9)

where PGðθÞ ¼ e−
4θ2L2

d2 , d being the 1∕e patch diameter and
θ ¼ jθj.

The correlation between two patch-averaged tilts αp1 and
αp2 is

EQ-TARGET;temp:intralink-;e010;326;163hαp1:αp2i ¼
RR

dθ1dθ2hαðθ1Þ · αðθ2ÞiPGðθ1ÞPGðθ2 − ΔθÞRR
dθ1dθ2PGðθ1ÞPGðθ2 − ΔθÞ ;

(10)

where Δθ is the angular separation between the two patches.
The order of integration and ensemble averaging is inter-
changed to obtain the above expression. In the following
analysis, the patches are assumed to be equal in size. The
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term with the angle brackets in Eq. (10) is nothing but the
correlation of tilts due to two point sources. Substituting
Eq. (8) into Eq. (10),

EQ-TARGET;temp:intralink-;e011;63;719

hαp1:αp2i ¼
�
−
2.91

2

��
16

πAp

�
2

D−1∕3
Z

L

0

dzC2
nðzÞ

×
ZZ

dθ1dθ2PGðθ1ÞPGðθ2 − ΔθÞ

×
Z

2π

0

dϑ

Z
1

0

du½ðu cos−1uÞ − u2ð3 − 2u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

×
�
u2
�
1 −

z
L

�
2

þ
�
z
D
jθ1 − θ2j

�
2

þ 2u

�
1 −

z
L

��
z
D
jθ1 − θ2j

�
cos ϑ

�
5∕6

; (11)

where Ap ¼ ∫ dθPGðθÞ ¼ πd2

4L2.
Equation (11) can be equivalently expressed as

EQ-TARGET;temp:intralink-;e012;63;540

hαp1:αp2i ¼
�
−
2.91

2

��
16

πAp

�
2

D−1∕3
Z

L

0

dzC2
nðzÞ

×
ZZ

dθ1dθ 0
2PGðθ1ÞPGðθ 0

2Þ

×
Z

2π

0

dϑ

Z
1

0

du½ðu cos−1uÞ − u2ð3 − 2u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

×
�
u2
�
1 −

z
L

�
2

þ
�
z
D
jθ1 − θ 0

2 − Δθj
�

2

þ 2u

�
1 −

z
L

��
z
D
jθ1 − θ 0

2 − Δθj
�
cos ϑ

�
5∕6

: (12)

Let

EQ-TARGET;temp:intralink-;e013;63;371θ1 − θ 0
2 ¼

d
L
x; θ1 þ θ 0

2 ¼
2d
L

y: (13)

Changing the variables of integration, Eq. (12) reduces to

EQ-TARGET;temp:intralink-;e014;63;318

hαp1:αp2i ¼
�
−
2.91

2π

��
16

π

�
3

D−1∕3
Z

L

0

dzC2
nðzÞ

×
ZZ

dxdy½e−ðxþ2yÞ2e−ð2y−xÞ2 �

×
Z

2π

0

dϑ

Z
1

0

du½ðu cos−1uÞ − u2ð3 − 2u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

×
�
u2
�
1 −

z
L

�
2

þ
�
zd
DL

����x − L
d
Δθ

����
�

2

þ 2u

�
1 −

z
L

��
zd
DL

jx − L
d
Δθj

�
cos ϑ

�
5∕6

: (14)

Now, ∫ dye−ðxþ2yÞ2e−ð2y−xÞ2 ¼ ∫ dye−8ðy2þx2
4
Þ ¼

∫ ∞
0 dy∫

2π
0 dβ½y e−8ðy2þx2

4
Þ� ¼ π

8
e−2x

2

, where x ¼ jxj and
y ¼ jyj.

Substituting the above result in Eq. (14), the expression
for patch-averaged tilt correlation becomes

EQ-TARGET;temp:intralink-;e015;326;752

hαp1:αp2i¼−
�
2.91

π

��
16

π

�
2

D−1∕3
Z

L

0

dzC2
nðzÞ

Z
2π

0

dδ

×
Z

∞

0

dxðxe−2x2Þ

×
Z

2π

0

dϑ

Z
1

0

du½ðucos−1uÞ−u2ð3−2u2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1−u2

p
�

×
�
u2
�
1−

z
L

�
2

þ
�
zd
DL

�
2
�
x2þ

�
L
d
Δθ

�
2

−2x
L
d
Δθcosδ

�

þ2u

�
1−

z
L

��
zd
DL

�
cosϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ

�
L
d
Δθ

�
2

−2x
L
d
Δθcosδ

s 

5∕6

:

(15)

The expression for patch-averaged tilt variance hα2
pi derived

in Refs. 9 and 10 can be obtained from Eq. (15) by setting
Δθ ¼ 0. The differential patch-averaged tilt variance can
hence be expressed as
EQ-TARGET;temp:intralink-;e016;326;537hðαp1 − αp2Þ2i ¼ 2½hα2

pi − hαp1:αp2i�

¼
Z

L

0

dzC2
nðzÞfdðzÞ; (16)

where
EQ-TARGET;temp:intralink-;e017;326;466

fdðzÞ¼−11.64
�
16

π

�
2

D−1∕3
Z

∞

0

dxðxe−2x2Þ

×
Z

2π

0

dϑ

Z
1

0

du½ðucos−1uÞ−u2ð3−2u2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1−u2

p
�

×
�
u2
�
1−

z
L

�
2

þ
�
zd
DL

x

�
2

þ2u

�
1−

z
L

��
zd
DL

x

�
cosϑ

�
5∕6

þ
�
5.82

π

��
16

π

�
2

D−1∕3
Z

2π

0

dδ

Z
∞

0

dxðxe−2x2Þ

×
Z

2π

0

dϑ

Z
1

0

du½ðucos−1uÞ−u2ð3−2u2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1−u2

p
�

×
�
u2
�
1−

z
L

�
2

þ
�
zd
DL

�
2
�
x2þ

�
L
d
Δθ

�
2

−2x
L
d
Δθcosδ

�

þ2u

�
1−

z
L

��
zd
DL

�
cosϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ

�
L
d
Δθ

�
2

−2x
L
d
Δθcosδ

s 

5∕6

;

(17)

is the path weighting function. No simpler form for the
weighting function could be obtained, and hence in the
present work, Eq. (17) was evaluated numerically for
cases of interest. Figure 5 shows a plot of fdðzÞ for different
patch sizes and separations. The aperture size and the path
length used in the evaluation were the same as those used in
the VAMedical Center imaging experiment, i.e.,D ¼ 35 cm
and L ¼ 7 km. The weighting function drops to zero at both
ends of the path. This implies that the turbulence near the
target hardly affects the differential motion seen by the cam-
era. The tilt due to turbulence at the camera is the same for
both patches since the two sensing paths converge at the
camera. This explains the zero weighting of turbulence at
the camera end of the path. The time-lapse method, thus,
is not sensitive to turbulence variations either at the source

Optical Engineering 104108-5 October 2018 • Vol. 57(10)

Bose-Pillai et al.: Estimation of atmospheric turbulence using differential motion of extended features in time-lapse imagery



or at the camera. The peak locations of the weighting func-
tions depend on the patch size and separation relative to the
imaging aperture. Subaperture sized patches and separations
have weighting functions that peak toward the target end of
the path. Larger patch sizes and separations have weighting
functions that peak toward the camera end of the path.

2.3 Creating Arbitrary Weighting Function from
Linear Combination of Path Weighting Functions

If the turbulence is presumed to be constant along the path,
then the differential tilt variance associated with each pair of
image patches would provide an estimate for C2

n. If this pre-
sumption is not made, a set of tilt variances from pairs of
patches of different sizes and separations can be seen as
encoding differences in C2

n along the path. Members of a
set of path weighting functions, from a variety of differently
sized and separated image patches, each characterizes the
turbulence along (almost) the same path, but each weights
that path differently. However, this rich set of weighting
functions can be used as a basis set such that the weighting
functions from this set can be linearly combined to reproduce
the path weighting function associated with some atmos-
pheric parameter of interest. To determine the appropriate
linear combination of weighting functions, the Moore–
Penrose pseudoinverse technique can be used to find the
least-squares optimal way to achieve the desired weighting
function in terms of the basis set available. This technique
was used in Ref. 10 to get an unbiased estimate of r0
from the motion of image patches of two different sizes.
Here it is shown that the weighting functions for differential
patch-averaged tilt variances can be used to better reproduce
the weighting functions for the spherical wave r0 and a
scintillometer.

The spherical wave r0 is given by17

EQ-TARGET;temp:intralink-;e018;63;139r0;sw ¼
�
0.423k2

Z
L

0

dz

�
1 −

z
L

�
5∕3

C2
nðzÞ

�
−3∕5

: (18)

This equation has been written so the integration takes place
from the camera to the target, i.e., the camera is at 0 and the
target is at L as above. In this expression, C2

n is weighted by

z5∕3 along the path. This is the same weighting as that of tilt
variance due to a point source. Since there is no beacon or
point source at the target, no part of the image corresponds to
a weighting function of this form. By sampling the weighting
functions along the path and generating a matrix M, where
the rows are formed from the individual weighting functions
and the columns correspond to the ranges where these func-
tions are sampled, the desired weights can be computed as
W ¼ MþF, where W is the weight to be applied to each
weighting function, F is the desired weighting function
sampled the same way as M, and Mþ is the pseudoinverse.
The success of this operation can then be revealed by exam-
ining MW, which is the actual weighting function generated
by attempting to match F with a linear combination of func-
tions drawn from M.

The Moore–Penrose technique is used here to obtain the
pseudoinverse. Figure 6 shows how three different weighting
functions corresponding to pairs of image patches of differ-
ent sizes and separations are linearly combined to reproduce
the weighting function for r0;sw. The aperture size and the
path length used in the evaluation are the same as those
used in the VA Medical Center imaging experiment. The
weighting function obtained from linear combination of
weighting functions, matches the desired weighting function
well, except for a small portion of the path close to the cam-
era. So unless there is significantly strong turbulence near the
camera, it is possible to obtain a fair estimate of r0 from the
differential motion of these pairs of patches.

The same technique can be used to obtain a weighting
function that closely matches that of a scintillometer. The
approximate functional form of the weighting function for
Scintec BLS scintillometers can be found in Ref. 18.
Figure 7 shows how weighting functions corresponding to
pairs of patches of two different separations from the VA
Medical Center images can be linearly combined to approxi-
mate the scintillometer weighting function. Except for the
region near the camera, the two weighting functions agree
reasonably well. This weighting function has been used
with the VAMedical Center imagery in the following section
to obtain C2

n estimates that compare directly to scintillometer
measurements.

Fig. 5 Path weighting functions of differential patch-averaged tilt variances for different patch sizes and
separations. The camera is at z ¼ 0 and the target is at z ¼ 7000 m.
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3 Results

3.1 VA Medical Center Imaging Experiment:
Comparison of Time-Lapse Estimates to
Scintillometer Measurements

Four patches of 1∕e diameter 16 cm (20 pixels), each cen-
tered at one of the corners of the two windows in the right
wing of the building (shown in Fig. 2), were tracked. Hence
there were two pairs of patches separated by 48 cm, and two
pairs of patches separated by 1.8 m at the target for each

image. A 30-frame moving window, corresponding to
20 min of imagery, was used to compute the variance
from the differential motion. The horizontal and vertical var-
iances were added to obtain the total variance. The tilt var-
iances for the two different patch separations were multiplied
by their corresponding weights (computed using the pseu-
doinverse technique mentioned in Sec. 2) and added together
to obtain a path-weighted estimate of C2

n. In essence, the
path-weighting function for the C2

n estimate was the weight-
ing function shown in Fig. 7(b). The C2

n estimates were

Fig. 6 Three path weighting functions in (a) linearly combined to obtain a weighting function very close to
the r 0 weighting function in (b). The camera is at z ¼ 0 and the target is at z ¼ 7000 m.

Fig. 7 Two path weighting functions in (a) linearly combined to obtain a weighting function very close to
the BLS 2000 scintillometer weighting function in (b). The camera is at z ¼ 0 and the target is at
z ¼ 7000 m.
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compared to the BLS 2000 scintillometer measurements.
Figures 8–11 show the results of these comparisons for
four days over different weather conditions.

According to meteorological observations,19 February 14,
2017 was a clear day. As evident from Fig. 8, the time-lapse
estimates agree very well with the scintillometer measure-
ments. Throughout the experiment, the two windows being
tracked were in the shadow for most of the day. Poor contrast
during sunrise and sunset times and shadows sweeping
across the windows during the early mornings [as seen in
Fig. 2(a)] contributed to estimation error during these
times. February 15 was clear earlier during the day, but it
became cloudy by midmorning. Overcast conditions pre-
vailed from around noon to 1:30 PM (local standard time,

UTC-5 h), causing the dip in C2
n, seen in Fig. 9. Again,

there is excellent agreement between the time-lapse esti-
mates and the scintillometer measurements. February 18 was
marked by alternating cloudy and clear conditions through-
out the day. This resulted in multiple peaks and troughs in the
C2
n profile, as seen in Fig. 10. The time-lapse estimates and

scintillometer show agreeable trends and values. However,
due to software issues, the camera failed to capture images
intermittently, causing gaps in the time-lapse C2

n profile.
Figure 11 shows a comparison between time-lapse estimates
and scintillometer measurements for February 21. This was a
cloudy day, with clear conditions developing very late in the
afternoon. The time-lapse estimates agree reasonably well
with the scintillometer, the gaps in the profile suggesting

Fig. 8 Comparison of C2
n estimates from time-lapse imagery with C2

n from scintillometer: February 14,
2017. Differences in the two profiles are possibly due to estimation errors resulting from moving shadows
and poor image contrast during early morning and late afternoon.

Fig. 9 Comparison of C2
n estimates from time-lapse imagery with C2

n from scintillometer: February 15,
2017. Differences in the two profiles are possibly due to estimation errors resulting from moving shadows
and poor image contrast during early morning and late afternoon.
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again lack of data due to software issues during collection.
Poor contrast during cloudy conditions could have contrib-
uted to the slight differences in the two profiles.

3.2 Runway Imaging Experiment: Comparison of
Time-Lapse Estimates to Scintillometer
Measurements

Figure 12 shows a set of path weighting functions for the
runway experiment for different patch separations. Two in-
dependent estimates of C2

n were obtained from the time-lapse

images of July 18 and July 20. For July 18, four patches of
1∕e diameter of 46 cm (40 pixels) centered at the four cor-
ners of the trailer window were used for the estimation.
Hence there were two pairs of patches separated by
1.17 m and two pairs of patches separated by 2.44 m in
each image. A 36-point moving window (corresponding
to 3 min of imagery) was used to compute the variance.
Since the path was nearly horizontal over the same surface
type, it was presumed that C2

n was constant along the path.
The path-averaged C2

n was obtained by dividing the total
variance by the area of the corresponding weighting function

Fig. 10 Comparison of C2
n estimates from time-lapse imagery with C2

n from scintillometer: February 18,
2017. Differences in the two profiles are possibly due to estimation errors resulting frommoving shadows,
contrast change in neighboring images due to changing cloud cover, and poor image contrast during
early morning and late afternoon.

Fig. 11 Comparison of C2
n estimates from time-lapse imagery with C2

n from scintillometer: February 21,
2017. Differences in the two profiles are possibly due to estimation errors resulting frommoving shadows,
contrast change in neighboring images due to changing cloud cover, and poor image contrast during
early morning and late afternoon.
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for that separation. For July 20, 12 patches of 1∕e diameter
16 cm (14 pixels) from different parts of the 4 target posters
were used. This resulted in four pairs of patches of separation
1.16 m (100 pixels) and four pairs of patches with separation
4.79 m (412 pixels) from each image. A 60-point moving
window was used to compute the variance.

Figures 13 and 14 show comparisons of the time-lapse
estimates to the scintillometer measurements. Just as in
the VA Medical Center experiment, there is good agreement
here too. If C2

n were constant along the path, all three esti-
mates in Figs. 13 and 14 would be the same. The difference
in estimates can be attributed to slight variations in C2

n along

the path, in addition to estimation noise. The estimation
noise can be due to blurring of features, moving shadow
effects [as evident in Fig. 4(a) with the overhang casting
a shadow], and changes in contrast between adjacent images
as cloud shadows pass over the target. The over-exposure in
the images of July 20 led to some estimation error as well.

4 Conclusions
A method for obtaining turbulence information from differ-
ential motion of extended features in the time-lapse imagery
of a distant target was described. A potentially significant
advantage of this method, although not tested in the

Fig. 12 Path weighting functions of differential patch-averaged tilt variances for three different patch
separations. The camera is at z ¼ 0 and the target is at z ¼ 1000 m.

Fig. 13 Comparison of C2
n estimates from time-lapse imagery with C2

n from scintillometer: July 18, 2017.
Estimation errors are possibly due to moving shadows, blurring of features, and changes in contrast
between neighboring images due to changing cloud cover around noon.
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experiments described here is that it is phase-based, and
hence can be applied to long paths through turbulence
where irradiance-based techniques suffer from saturation
problems. Additionally, it allows turbulence to be measured
remotely from a single site. The variance of the differential
image motion was shown to be a weighted integral of C2

n
over the propagation path. An analytical expression for
the path weighting function was developed and was
shown to depend on the aperture size, path length, and
the feature sizes and separations. These weighting functions
form a rich set of a family of functions that tapers to zero at
both ends of the measurement path. Weighting functions for
different patch sizes and separations can be linearly com-
bined to approximate any desired weighting function,
such as that of Fried’s coherence diameter r0 or that of
a scintillometer. The time-lapse measurements can thus
mimic the measurements from a scintillometer or any
other instrument. The technique was applied to time-lapse
images captured along two different paths. The path-aver-
aged estimates of C2

n from the experimental data agreed
very well with scintillometer measurements, even when non-
cooperative targets were imaged. The slight differences were
mainly due to turbulence-induced blurring of features, mov-
ing shadows, poor contrast in some images, and contrast
changes due to changing cloud cover. With a noncooperative
target such as the VAMedical Center, there were few features
to track in a single frame and hence several frames were
required to obtain tilt variances. This introduced some tem-
poral averaging effects in the estimates.

In the derivation of the analytical expression for differen-
tial patch-averaged tilt variance, it was assumed that the
wave structure function is equal to the phase structure func-
tion. This might influence the results at high scintillation lev-
els. The Gaussian window used on the images was chosen
such that it dropped to zero at the edges of the tracking win-
dow. Often the Gaussian window might not have sufficient
trackable features under it, e.g., a patch centered at a window
corner. In such cases, the effective patch size would be much

smaller than the size of the Gaussian window used for the
analysis, resulting in overestimation of C2

n.
The time-lapse technique works well with noncooperative

targets as long as there are enough trackable features on the
target. If the technique is used at night for turbulence char-
acterization, either the target needs to be actively illuminated
or some light sources should be present in the scene. In the
future, a method to better estimate the effective patch sizes
will be developed. Simulations will be done with different
turbulence strengths to create synthetic imagery. The time-
lapse technique will be applied on these imageries to get
a better understanding of the nature of the estimation errors.
Experiments will be done with elevated targets to get an idea
of how C2

n varies with altitude. Meteorological measure-
ments taken simultaneously will provide a better understand-
ing of how turbulence depends on different weather
parameters. Additionally, a scheme to use the time-lapse
measurements to profile turbulence along the path will be
investigated.
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