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1 Introduction

The techniques and insights particular to optical engineering have been applied to a variety of
disciplines beyond optics.1 In particular, the analysis of “ray” paths in analogs to gradient-index
(GRIN) media2 has yielded interesting results in fields as diverse as oceanography and coastal
engineering,3,4 acoustics,5 seismic waves,6 and chemical physics.7 In this paper, we apply the
tools of optical engineering to a problem that is, at once, familiar—since the rays here are indeed
light rays—and unfamiliar—since the rays are bent not by materials but by the presence of
massive gravitating bodies.

Gravitational lensing (i.e., the bending of light rays by a massive object) was one of the first
predictions of Einstein’s General Theory of Relativity to be experimentally confirmed. Eddington
et al.8 measured the gravitational deflection of light rays by the Sun during the total eclipse of the
Sun in 1919. Results from these measurements (1.61� 0.30 arc sec and 1.98� 0.12 arc sec)
were consistent with the value predicted by General Theory of Relativity of 1.75 arc sec, differing
from the Newtonian prediction of 0.87 arc sec by a factor of nearly two. In the intervening years,
agreement between theoretical and experimental values for ray deflection by the sun has been
refined through the use of radio astronomy to better than three parts in ten thousand.9

Knowledge of the lensing effects allows for estimation of the total mass of the galaxy acting
as the lens.10 Given that the amount of light (visible) matter in those galaxies is substantially less
than the predicted mass of the galaxies, this method provides an estimate for the amount of dark
matter present in them. Since the galaxies forming the lenses are typically several orders of
magnitude further away from Earth and from the source of the light rays than they are thick,
astronomers typically treat them as thin lenses (i.e., they assume that all the bending takes place
in a single plane11), using the models often taught in introductory physics courses to describe
ray bending.

This method is, however, poorly suited to situations when a group of galaxies forms a
“lumpy” lens, as is the case with visually striking examples such as the Cheshire Cat,12 which
consists of three galaxies acting as a lens for the light produced by several more distant galaxies.
(The Cheshire Cat indeed takes its name from the grinning cat in Lewis Carroll’s Alice in
Wonderland. See it at NASA’s Astronomy Picture of the Day, 2015 November 2713.) In addi-
tion to the simple deflection of light rays by gravitating bodies, astronomers have observed
gravitational lensing of very distant galaxies by a somewhat less distant galaxy, including the
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production of multiple images.14 In these cases, ray tracing cannot be accomplished by the sim-
ple application of the law of refraction since the index of refraction cannot be modeled as homo-
geneous. Instead, Fermat’s principle governs ray propagation in such media: rays travel along
paths of stationary optical path length, where the optical path length is the product of the refrac-
tive index and the path length. For example, the existence of four stationary paths is demon-
strated in the four images formed by the lensing galaxy in the famous case of the Einstein Cross
(see it at NASA’s Astronomy Picture of the Day, 2017 December 1715).

One solution to this difficulty is to model gravitational lenses as GRIN lenses.16,17 In this
paper, we present a method for modeling gravitational lenses as GRIN lenses in the ray tracing
software CODE V. Although there are several methods to numerically integrate ray paths in a
gradient index medium, CODE V uses a standard Runge–Kutta method.18 Practical consider-
ations, including the algorithmic efficiency and accuracy, of ray tracing in GRIN materials with
this software are well documented.19 We demonstrate that the method presented herein produces
results consistent with theory and experiment for the case of gravitational deflection of grazing
rays by the Sun. Then we discuss its potential for use for modeling a group of galaxies that form a
lumpy lens.

2 Implementation of Models in CODE V

In this work, the Sun is simulated as a Schwarzschild gravitating body (i.e., a static, spherical
mass distribution). For such a body, the index of refraction in spherical coordinates is

EQ-TARGET;temp:intralink-;e001;116;477nðrÞ ¼ r
r − rg

; (1)

where r is the radial distance from the center of mass of the object causing the gravitational field
and rg is the Schwarzschild radius (i.e., the radius of the largest black hole with the same mass as
the the object).17 This index distribution is plotted in Fig. 1. For the purpose of numerical evalu-
ation, the unit for simulation of solar gravitational lensing is selected as the solar radius (SR),
which is ∼6.957 × 108 m. The Schwarzschild radius of the Sun is 2.95 × 103 m, which is equiv-
alent to 4.24 × 10−6 SR. The change of index of refraction from unity decreases as the point of
interest moves away from the center of the Sun. At an infinite distance, the index of refraction
reduces to unity.

It can be concluded that, in the case of solar gravitational lensing, the majority of the index of
refraction variation from the Sun’s gravity occurs within 100 SR from the center of the Sun. For a
numerical ray tracing simulation with finite computational resources, this conclusion provides an
important guideline for setting up the simulation in CODE V. However, the gravitational field
GRIN does not follow any of the existing GRIN conventions in CODE V. In order to define this
kind of arbitrary gradient in a material, we employ the most rapid and robust method to allow ray
tracing through arbitrary GRIN materials—the user-defined gradient (UDG) subroutine in
CODE V. The UDG subroutine must be programmed to compute the index of refraction at any
point in space as well as the explicit derivatives of the index of refraction. For a gravitational field

Fig. 1 Semilog plot of the index variation of vacuum as a function of distance from the center of
the Sun.
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that is represented by a GRIN material, the GRIN coefficients are related to the astronomical
constants and coefficients of the body that is under simulation, such as its Schwarzschild radius.

To simulate the light deflection due to the gravitational lensing of the Sun, a user-defined
GRIN material representing as a Schwarzschild gravitating body with the Schwarzschild radius
equal to that of the Sun is programmed. Additional details regarding this GRIN material are
provided in the Appendix. The simulation region is programmed to be a cylindrical region,
2 SR in diameter and 1000 SR in length, symmetrically positioned around the center of the
Sun. A schematic of this simulation is presented in Fig. 2. When a geometrical ray, aimed
to graze the surface of the Sun, is traced through the simulation region, the ray deflection angle
between the input and output rays is recorded as 1.749 arc sec, in agreement with theoretical
(1.75 arc sec) and experimental results, which, as noted in the introduction, agree with theoretical
predictions to three parts in a thousand. (The advent of radio astronomy has obviated the need to
look only for grazing rays during solar eclipses, and hence these measurements have been made
for rays traveling at various distances from the Sun’s center. For a grazing ray, this would be
equivalent to 1.750� 0.005 arc sec:) Sen’s computational model using the same expression for
the index of refraction yields a ray deflection angle of 1.78 arc sec, so we see that the robust and
well-tested codes of the UDG subroutine in CODE V yield better agreement with theory and
experiment.

In addition to the simulation of the Sun, the ray deflection angles of Schwarzschild gravi-
tating bodies with differing ratios between Schwarzschild radius and physical radius are evalu-
ated. Note that this ratio is ≥1 for black holes. The relationship between the deflection angle and
the Schwarzschild-physical-radius-ratio is linear when the Schwarzschild radius is very small
compared to the physical radius of the gravitational body (as is the case for main sequence stars
and even galaxies), as shown in Fig. 3. However, as the Schwarzschild radius becomes a notice-
able fraction of the physical radius (or equivalently, as the density becomes very high, as it does

Fig. 2 Schematic diagram of the ray-tracing simulation of gravitational lensing by the Sun.

Fig. 3 Plot of deflection angle versus ratio of Schwarzchild radius to physical radius of a gravi-
tating body. This relationship is linear when this ratio is small, as for most stars.
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for objects like neutron stars), the deflection angle becomes nonlinear with the Schwarzschild
radius, as shown in Fig. 4.

It is also possible to model a Kerr (i.e., rotating spherical) body in a similar fashion,20

although several simplifying assumptions are necessary to reduce the complexity of that prob-
lem, as discussed in the Appendix. Note that treating the Sun as a Kerr body does not make a
meaningful difference in the ray deflection angle.

3 Limitations of the Model

The programmed GRIN model for both Schwarzschild and Kerr bodies can be applied to differ-
ent gravitational bodies by tuning the parameters. Additionally, more complex models can be
programmed by combining multiple displaced bodies with appropriate parameters. However,
some limitations must be addressed before more complex systems can be simulated usefully
using the aforementioned methodology.

When modeling the gravitational lensing effect in imaging optical-design software such as
CODE V or OpticStudio, there is an intrinsic trade-off between the range and the precision,
because the software is primarily designed for the purpose of modeling imaging lenses for which
an extraordinarily large dynamic range is not required. Although optical values can be evaluated
with 12 significant digits in CODE V in double-precision floating-point format, ray tracing can
be problematic when simulating gravitational lensing because the object is often very far from
the lens compared with its spatial extent. It is, therefore, difficult to simulate the propagation of
light on a large scale while simultaneously modeling the lensing effects that occur on a small
spatial scale. When modeling imaging optics, it is common to consider objects that are far away
as objects at infinity, in which case the accurate representation of very large object distance is not
critical to the ray tracing results. This is true because the object distance is usually much greater
than the effective focal length of the lens. However, in the scenario of modeling gravitational
lensing, the lensing effect from an astronomical body is usually very weak, creating an excep-
tionally large effective focal length for the lens. Thus although the object is far away on an
absolute scale, it cannot be treated as object at infinity. The accurate representation of these
extraordinarily large numbers becomes more important, and in some cases, this can become
a challenge when the software has limited dynamic range in its data structure.

4 Concluding Remarks

Our current models using existing imaging optical design software are capable and accurate in
forward calculations of the lensing effect. The simulation method described is dependent on
accurate knowledge of the astronomical configurations and parameters of the gravitational sys-
tem. This information is often unknown or needs to be derived based on observations of the
gravitational lensing effects. Performing backward calculations to solve for astronomical facts

Fig. 4 Log–log plot of deflection angle versus ratio of Schwarzchild radius to physical radius of a
gravitating body. This relationship is no longer linear as the Schwarzchild radius becomes an
appreciable fraction of the physical radius. The ratios for common astronomical objects, including
the Sun, the Milky Way, a white dwarf, and a neutron star are indicated for reference.
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from the observed data is not practical using the GRIN model within existing optical design
software.

Ideally, custom ray tracing software must be developed to fully exploit the potential of the
GRIN model for simulation of gravitational lensing, allowing for modeling of “lumpy” lenses
and other complex phenomena. Recent work on the modeling of freeform GRIN in two dimen-
sions to achieve a predetermined and complex irradiance distribution21 is an interesting inverse
problem, whose solution in three dimensions may prove useful to the inverse problem of deter-
mining the dark matter composition of these lumpy astronomical lenses. Additionally, biological
media have many similarities to complex astronomical lenses, consisting as they do of many
elements of different compositions and shapes, despite the large differences in scale.22,23

Similarly, propagation of light through the atmosphere presents many related challenges.24,25

Continued work to improve and expand optical engineering codes will make problems from
across science and engineering disciplines more tractable.

5 Appendix: Gradient-Index Models for Spherical Gravitating Objects

In this section, we consider both Schwarzschild (static spherical) and Kerr (rotating spherical)
gravitating objects.

5.1 Schwarzschild Gravitating Body

For a static, spherically symmetric gravitational field, the index of refraction in spherical coor-
dinates is

EQ-TARGET;temp:intralink-;e002;116;452nðrÞ ¼ r
r − rg

; (2)

where r is the radial distance from the center of mass of the object causing the gravitational field
and rg is the Schwarzschild radius.17 This can be rewritten in terms of the Cartesian coordinates
for ease of use in CODE V

EQ-TARGET;temp:intralink-;e003;116;372nðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
− rg

: (3)

For CODE V to treat this index distribution as a GRIN, n∇n is also necessary; due to the sym-
metry of this index distribution the three terms will be fundamentally similar. A bit of algebra
after taking the partial derivatives yields

EQ-TARGET;temp:intralink-;e004a;116;286n
∂n
∂x

¼ −
xrg� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

− rg
�
3
; (4a)

EQ-TARGET;temp:intralink-;e004b;116;223n
∂n
∂y

¼ −
yrg� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

− rg
�
3
; (4b)

EQ-TARGET;temp:intralink-;e004c;116;181n
∂n
∂z

¼ −
zrg� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

− rg
�
3
: (4c)

5.2 Kerr Gravitating Body

For a Kerr gravitating body (i.e., a rotating spherically symmetric object), the index of refraction
in spherical coordinates is given in Refs. 16 and 20. Here, it has been converted to Cartesian
coordinates
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EQ-TARGET;temp:intralink-;e005;116;735nðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
− rg

�
1þ 2α

rgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
− rg

1

c
dϕ
dt

�
; (5)

where α is the rotation parameter and 1
c
dϕ
dt describes the frame dragging. In the equatorial plane20

EQ-TARGET;temp:intralink-;e006;116;680

dϕ

dt
¼

rgαþ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

− rg
�
b

ðx2 þ y2 þ z2Þ3∕2
h
1þ α2

x2þy2þz2 þ
rgα2

ðx2þy2þz2Þ3∕2
i
− rgαb

c; (6)

where the impact parameter b ¼ Lc∕E0 (Here, L is the angular momentum and E0 the conserved
energy of the light.) In the far field of the equatorial plane, this simplifies to20

EQ-TARGET;temp:intralink-;e007;116;596

dϕ

dt
¼

rgαþ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

− rg
�
b

ðx2 þ y2 þ z2Þ3∕2 − rgαb
c: (7)

Therefore, for light incident on the equatorial plane of the gravitating body, in the far field,
the index of refraction simplifies to

EQ-TARGET;temp:intralink-;e008;116;519

nðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
− rg

×

2
641þ 2α

rgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
− rg

rgαþ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

− rg
�
b

ðx2 þ y2 þ z2Þ3∕2 − rgαb

3
75
−1∕2

: (8)

Here, ∂n
∂x is given by

EQ-TARGET;temp:intralink-;e009;116;409

∂n
∂x

¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2αrgþb

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
−rg

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þz2
p

−rg

�
½ðx2þy2þz2Þ3∕2−αbrg�

vuuut
×

8><
>:−

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
− rg

�
2

þ αrg

�
−ðx2 þ y2 þ z2Þ2 þ rg

�
−2α2rg þ ðx2 þ y2 þ z2Þ3∕2 þ αb

�
rg −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q ���
−1

×
�
α2br2g − αrgðx2 þ y2 þ z2Þ

�
−3rg þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q �

− 3bðx2 þ y2 þ z2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
q

− rg

�
2
�
þ 1

x2 þ y2 þ z2 − rg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
9>=
>;; (9)

where the y and z derivatives are similar, simply replacing the x in the numerator of the factor
outside the braces with y and z, respectively.
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