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Abstract. We present the design and performance verification of a fiber-fed Fourier transform
spectrograph (FTS) for spectroscopy in the optical band with the ability to reach a maximum
optical path difference of 15 mm and allowing for an adjustable spectral resolution (λ∕Δλ)
between 1 and 15,000. The designed FTS system was successfully constructed using only
off-the-shelf optical components. The technique for correction of the phase distortion in the
FTS using a metrology interferogram and cubic spline interpolation was investigated and dis-
cussed. The contrast performance and the instrument line shape of the FTS were measured and
analyzed. To further verify the performance of the developed system, the absorption spectrum
of the sunlight was measured and compared with a synthetic model with identified telluric and
absorption lines. The result shows that the developed FTS can detect the absorption lines with a
spectral resolution close to 15,000. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.61.1.014104]
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1 Introduction

The spectroscopy technique is used by astronomer to study the universe to find out the physical
properties or determine the chemical composition and radial velocities of stellar objects.1 A
Fourier transform spectrograph (FTS) is one of the most challenging instruments to be applied
in astronomy. The history of FTS in ground-based astronomy has been nicely summarized by
Maillard et al.2 and Drissen et al.3 The use of FTS started in the 1970s and in 1980s when the FTS
was installed on the Kitt Peak’s Mayall 4-m telescope. Since then, FTSs have been widely used
to provide spectra in the near-infrared of both single-point and extended objects.4,5

Recently, the highly effective imaging FTS that operates in the optical domain was devel-
oped and installed on large telescopes. First, the Spectromètre Imageur de l’Observatoire du
Mont-Mégantic was installed on the focal plane of the 1.6-m telescope of the Mont Mégantic
Observatory. More recently, the SITELLE was installed on the 3.6-m Canada–France–Hawaii
Telescope. This instrument was commissioned in 2015 and has provided data cubes over the
spectral domain [350 nm, 900 nm] with a spectral resolution adjustable 6 between 1 and 10,000
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over a field-of-view of 11 0 × 11 0 with a seeing-limited angular resolution close to 0.8″. These
FTSs are installed directly at the focal plane of the telescopes. The design thus involves only
large and custom-made optics together with complex mechanical structures and active mech-
anisms to guarantee the performance in operational conditions. These constraints lead to massive
custom-made instruments that are difficult to manufacture and very expensive.

Most of the current fiber-fed medium and high-resolution spectrographs mounted on large
telescopes are Echelle spectrographs.7,8 One of the most famous examples is the HARPS spectro-
graph mounted on the 3.6-m telescope of La Silla observatory at the European Southern
Observatory. This instrument has provided high quality spectra and has made the discovery
of several new exoplanets and other astronomical phenomena possible.9,10 However, these spec-
trographs usually suffer from several limitations, such as instrument volume, complexity, cost,
throughput, and sensitivity to fiber modal noise.

In the fiber-fed Echelle spectrograph, the fiber acts as an entrance slit from which the beam is
focused onto the dispersive elements. The focal length is adjusted to reach the desired spectral
resolution. In an extended fiber core, a larger spectrograph volume is thus required due to the
increasing of focal length. The diameter of the fiber of an Echelle spectrograph is adjusted to
match the size of the star image provided by the telescope and defined by the seeing conditions.
The collimator focal length is then adjusted to reach the specified spectral resolution and the fiber
core diameter. Therefore, the focal length defines the size of the optical surfaces and thus the
instrument volume and cost. For example, in HARPS, the grating length is 125 mm, and the full
instrument requires a vacuum vessel with a volume close to 2 m3 to stabilize the instrument
environment to reach the specified performance. The cost is thus usually very high, and only
large observatories with massive budget resources can afford the development of such
instruments.

In addition, the throughput of Echelle spectrographs is limited by the size of the input fiber
core diameter (matched to fit the seeing conditions), the grating efficiency, and the optics trans-
mission. There is a trade-off between fiber core diameter and system efficiency. For example, the
HARPS spectrograph has two operating modes, i.e. the standard (HAM) mode and the high
efficiency (EGGs) mode. The HAM mode uses fibers with a core diameter of 70 μm, covering
the sky aperture of 1″, and providing the accuracy of radial velocity of 1 m∕s. In the EGGs
mode, the fibers with a core diameter of 100 μm are used, covering a sky aperture of 1.4″, with
a throughput gain factor of 1.75 as compared with that of the HAMmode. However, EGGs mode
provides the accuracy of radial velocity of 3 m∕s, which is lower than that of the HAM mode.
The maximum transmission of HARPS including the limited core diameter and the spectrometer
transmission is close to 12%.10

Moreover, the Echelle spectrograph provides an image of the fiber output face at each wave-
length. The irradiance measured by the detector is thus defined by the modes propagation
through the fiber. The vibrations, constraints, and temperature variations of the operational con-
ditions change the modes propagation, thus inducing a temporal modification of the spectro-
graph point spread function that impacts the instrument accuracy.11 For this reasons, state-
of-the-art high-resolution spectrographs usually use some mode scramblers to mitigate the effect
of mode propagation on the instrument stability.

In this paper, we present the design and performance of a fiber-fed FTS for low-, medium-,
and high-resolution spectroscopy to be equipped on the 2.4 m Thai National Telescope (TNT).12

Based on the availability and cost of off-the-shelf optical components, the instrument was
designed to cover a spectral measurement in the range of 400 nm to 1 μm. A targeted spectral
resolution at wavelength λ as defined by1 R ¼ λ∕Δλ, where Δλ represents the smallest wave-
length resolved, will be adjustable between 1 and 70,000. A targeted signal-to-noise ratio (SNR)
will be higher than 10 on stars of magnitude m ≈ 6. The potential advantages are as follows: a
compact and cost-effective system using only commercial components, a large diameter of the
scientific fiber core, a high throughput limit, and insensitivity to fiber modal noise. The design
and implementation of the instrument are described. In addition, a technique for signal process-
ing of the developed FTS system based on the use of a metrology interferogram and spline
interpolation is presented and discussed. Moreover, the contrast performance and spectral res-
olution of the instrument are analyzed and presented. The instrument line shape (ILS) is verified
using several clear absorption peaks in the I-band of the measured Sun’s spectrum.
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2 Instrument Concept and Prototype Design

The TNT is a 2.3-m Ritchey–Chretien Telescope mounted on an Alta-Azimuthal mount. This
instrument is installed at the Thai National Observatory located at the altitude 2457 m, latitude
18.57 N, and longitude 98.48 E, as shown in Figs. 1(a) and 1(b). In this observatory, the seeing in
median conditions is better than δθseeing ≈ 2 00. The TNT collects the starlight beam with auto-
guiding and directs this beam toward a guiding and injection unit (GIU) and the scientific optical
fiber, as shown in Fig. 1(c). In the fiber-fed spectrograph system, the size of the fiber core that is
coupled to the telescope is adjusted to fit the size of the star image at the telescope focus. The
numerical aperture (NA) of the GUI is adjusted to be equal to NA of the fiber as13 NA ¼ 0.22,
and the TNT clear aperture diameter (D) is14 2.3 m. The effective focal length of the TNT com-
bined with GIU is calculated as feff ≅ D∕ð2 · NAÞ ¼ 5.2 m. The image of the star can be esti-
mated from the seeing condition and the telescope focal length15 feff · δθseeing ¼ 50.4 μm.
Therefore, we selected an optical fiber with a core diameter Φc ¼ 50 μm.

The fiber directs the light beam from the TNT GIU to a Y-coupler that comprises two output
fibers. The first fiber directs a fraction of the flux toward a photodetector to measure the real time
variations of the flux propagating through the fiber. The second fiber directs the light toward the
FTS, as shown in Fig. 2. The fiber output face is located at the focus of the lens L1 that collimates
and directs the scientific beam toward the 50:50 beam splitter (BS).

The BS separates the incident beam into two beams. On channel 1, the BS reflects the beam
toward dynamic mirror M1. This mirror is mounted on a linear translating stage and is moved by
a few centimeters during the data acquisition. On channel 2, the BS transmits the beam toward
static mirror M2, which reflects the beam back to the BS.

The BS combines the channel 1 and 2 beams and provides two output beams. One beam is
incident on the spectral filter and the balanced photoreceiver. The other beam is incident on the
reflecting prism P1, which directs the beam toward the spectral filter and the second entrance of
the balanced photoreceiver. The spectral filter located in front of the balanced photodetector aims
at (1) reducing the photon noise by restricting the spectral extent of the beam incident on the
detector and (2) suppressing the leak of the metrology signal induced by the scattering, diffrac-
tion, and spurious reflections.

The FTS is included on the metrology channel to monitor the displacement of the dynamic
mirror during the data acquisition. This corrects for the M1 displacement nonlinearities during
the observations. The metrology source is made of a stabilized laser that injects a beam at the
wavelength λref ¼ 633.178 nm into a single mode fiber (SMF). The SMF output face is located
at the focus of the lens L2. The beam collimated by L2 is directed toward prism P2.

The direction of the beam reflected by P2 is similar to the direction of the scientific beam
incident on the FTS. The optical path of the metrology beam through the interferometer is thus
similar to the scientific beam’s optical path. One detector located at the FTS metrology channel
output records the fringe pattern during the data acquisition. The metrology channel collects data
at the sampling frequency of 50 kHz with an integration time of 4.2 s, thus providing ∼10 points

Fig. 1 (a) The Thai National Observatory located on the Doi-Inthanon mountain at the altitude
2,457 m, latitude 18.57 N, and longitude 98.48 E. (b) The TNT installed on an Alta-Azimuthal
mount inside the dome. (c) Schematic concept of the proposed fiber-fed FTS system.
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per fringes. The sampling time interval in both the scientific and metrology paths is 20 μs, which
corresponds to an optical path difference (OPD) error of 36 nm at a translating stage speed of
1.8 mm∕s. This OPD error is negligible when compared with the wavelengths transmitted by the
spectral filter and should not affect the spectrum provided by the FTS.

Figure 3(a) shows the laboratory setup of the spectrometer that has been developed at the
NARIT Center for Optics and Photonics using a large core scientific optical fiber and only off-
the-shelf optical surfaces and mechanical and electronical components. To verify the perfor-
mance of the system, we concentrate the sunlight on the entrance face of the scientific fiber
using an achromatic doublet, as shown in Fig. 3(b). The scientific fiber directs the light toward
the setup comprising the components as shown in Fig. 3(a). The lists of the components for
both the scientific and metrology channels are provided in Tables 2 and 3, respectively,

Fig. 3 (a) The FTS prototype assembled at NARIT Center for Optics and Photonics. (b) Setup
used to concentrate the sunlight at the scientific fiber entrance.

Fig. 2 Schematic of the proposed FTS concept. The scientific beam is represented in orange,
and the metrology beam is represented in red.
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in Appendix A. The coupling of the fiber can be adjusted to reduce the flux at the fiber output
before entering the system to quantify the minimum detectable flux level of the current imple-
mented system. We quantified that the minimum flux level entering the current setup that
allowed for spectrum measurement with SNR > 10 is ∼1 μW. This input flux level was used
for all measurements presented in this paper. As part of our plan, to improve the sensitivity of the
system, a phase-lock amplifier is implemented. We already verified that the current detector
coupled with the phase lock amplifier [Model SR860, Stanford Research Systems] is able to
provide an SNR of 400 for an incident flux of 4 nW for an integration time of 1 ms.

The throughput of the spectrometer is defined by

EQ-TARGET;temp:intralink-;e001;116;628TSpectro ¼ TSlit × TCoupler × TFiber × TFTS; (1)

where TSlit is the throughput due to the limited size of the fiber core. In our case, the core diam-
eter is adjusted to collect the full star flux by taking account of the seeing and tracking accuracy.
We thus assume that TSlit ¼ 1. We assume that this injection unit will use (1) optical lenses of
coating optimized for the [400 nm, 1 μm] and (2) a BS 90:10 to reflect 10% of the starlight
toward a camera for guiding and tracking purposes. TCoupler is the transmission of the Y-coupler
used to monitor the variation of the star flux injected in the fiber and due to the variations of the
atmosphere transmission. We assume that TCoupler ¼ 50%. TFiber is the transmission of the fiber
that is taken to be equal to 1 (ideal case) in this study.

TFTS is the transmission of all optical components between the scientific fiber output face and
the detector

EQ-TARGET;temp:intralink-;e002;116;474TFTS ¼ TL1 × RM × ðRBS þ TBSÞ2 × TSF; (2)

where TL1 is the transmission of the lens L1 and RM is the reflectivity of mirrors M1 and M2,
which are assumed to be identical. RBS and TBS are the BS’s reflection and transmission, respec-
tively. TSF is the transmission of the spectral filter. We assume in this calculation that the prism
that folds the beam has a reflection coefficient of 1.

Figure 4 shows the theoretical throughput of the FTS equipped with an I-band photometric
filter obtained from Eq. (2) at the central wavelength of 800 nm and full width at half maximum
(FWHM) of 160 nm in the black solid line and the transmissions of each optical component
separately plotted in the dashed lines. We notice that the theoretical throughput reaches 80%
in the wavelength region of 760 to 840 nm. We measured the throughput of our FTS setup

Fig. 4 The theoretical transmission variations of each individual component in the FTS system are
separately plotted and in dashed lines (blue with rectangular mark: T L1, red with star mark: T BS,
magenta with diamond mark: RBS, green with rectangular mark: RM, cyan with circular mark: T SF).
The total transmission throughput of FTS system (T FTS) is plotted in the black solid line.
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in the I-band and found that TFTS;measure ≈ 85%, which is slightly above but still in line with our
predictions. Using Eq. (1), we estimate that the throughput of the full system at the wavelength of
800 nm is TSpectro ≈ 42%.

3 Processing Method

The processing algorithm used to extract the spectrum from the raw intensity measurements is
based on the method presented by Roy et al.16 This method comprises three steps, described
hereafter. As shown in Fig. 6(a), first, we simultaneously record the scientific and metrology
signals shown in Fig. 5. Second, we detect the location of the metrology signal peaks and valleys
by upsampled spline interpolation to improve accuracy.17 The OPD, which is quantified as twice
the mirror displacement, reached at a given metrology signal peak measured at the instant time
stamp TPV;K is called OPDPV;K , where K ¼ 1; : : : ; N. The OPD on the preceding signal valley
measured at the instant TPV;K−1 is called OPDPV;K−1, as shown in Fig. 6(b). We thus use the fact
of the time-position relation that OPDPV;K − OPDPV;K−1 ¼ 0.5λref to calculate the value of the
OPD at each time TPV;K .

Fig. 5 (a) Scientific signal Is and (b) metrology signal simultaneously recorded during the meas-
urement of the Sun spectrum.

Fig. 6 (a) The flow chart of the data processing algorithm used to illustrate the resampling I 0s to be
equally spaced intervals. (b) Time-position relation obtained from peak-valley detection is fitted
with a cubic spline to evaluate the timestamp variation T 0

i .
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We use a cubic spline interpolation18 to calculate the value of the OPD at any time sample T 0
i

between (TPV;K−1, OPDPV;K−1) and (TPV;K , OPDPV;K) as described in Naylor et al.19 The output
of the cubic spline interpolation is the time grid T 0

i that corresponds to the uniform OPD 0
i .

We resample IsðtÞ using a cubic spline interpolation corresponding to the time grid OPD 0ðT 0Þ.
The output of this interpolation is the signal I 0s that is sampled at an equidistance OPD value.
Finally, the spectrum result is obtained after taking the fast Fourier transform to this interfero-
gram resampling.

4 Result

4.1 Contrast Variation Versus OPD

The quality of the interference fringes is quantified by the fringe contrast defined as20:
C ¼ ðImax − IminÞ∕ðImax þ IminÞ, where Imax and Imin are the maximum and minimum intensities
of the fringe modulation, respectively. We measured the variation of the contrast at λref by inject-
ing the beam provided by the metrology source in the scientific fiber and measuring the signal

Fig. 7 (a) An illustration of contrast variation with respect to OPD for different fiber core diam-
eters of 50, 100, and 200 μm as plotted in the red dotted line, green dashed line, and black solid
line, respectively. (b) The contrast variation with respect to OPD. Blue dashed line: experimental
contrast measurement at λref. Red dotted line: theoretical contrast variation due to the spatial
extension of the fiber core. Yellow solid line: theoretical contrast variation due to a tilt of M1.
(c) Distribution of maximum and minimum intensities of image planes induced by the spatial
extension of the fiber core at ZPD and OPD ¼ 5, 10, and 15 mm. (d) Distribution of maximum
and minimum intensities in the pupil planes induced by the M1 tilt at ZPD and OPD ¼ 5, 10, and
15 mm.
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provided by the detector while varying the OPD from the zero optical path difference (ZPD) to
OPDmax ¼ 1.5 cm. The results are represented in blue solid line of Fig. 7(b).

We notice that the contrast varies from 1 to 0.6 between ZPD to OPDmax. We identified two
possible origins of the contrast variation with the OPD: (1) The spatial extension of the fiber core
and (2) the tilt of the dynamic mirror during the displacement. The impact of these on the contrast
performance are investigated and discussed hereafter.

4.2 Source Spatial Extension Impact on Contrast Performance

The spatial extension of the fiber core introduces a variation of the OPD that impacts the contrast
performance.21 We represent the fiber output face as a spatially incoherent source made of a disk
uniformly illuminated of diameter Φc. We set point M located in the plane of the fiber output
face at the distance y < Φc∕2 from the optical axis. The focal length of the collimator is
fcol ¼ 19 mm. The angle between the beam transmitted by the collimator and the optical axis
is θ ≈ y∕fcol, as shown in Fig. 8(a).

The OPD of the beam emitted by M is21 OPDMðLÞ ¼ 2 · L cosðy∕fcolÞ, where L is the dis-
tance of the dynamic mirror that varies between Lmin ¼ 0 mm at the ZPD and Lmax ¼ 7.5 mm
at OPDmax. The variation of OPD between the center and the edge of the fiber output face
is δOPD ≈ L · ðΦc∕2fcolÞ2. The maximum value of δOPD is reached at Lmax, where
δOPDmax ≈ 30 nm, which corresponds to λref∕20. The intensity of the beam emitted by M and
incident on the detector at wavelength λref ¼ 633.178 nm is

EQ-TARGET;temp:intralink-;e003;116;482IMðy; DÞ ¼ E2
0½1þ cosð2π · OPDMÞ∕λrefÞ�; (3)

where E0 is the amplitude of the electromagnetic field. The source is spatially incoherent, and we
deduce that the intensity detected at the mirror position L is the integral of intensity emitted by
each point of the fiber output face.

The results of contrast loss over the range between ZPD and OPDmax 15 mm due to the effect
of the fiber extension with varying the size of the fiber core are shown in Fig. 7(a). The contrast
variations of fiber core diameter Φc ¼ 50, 100, and 200 μm are plotted in the red dotted line,
green dashed line, and black solid line, respectively. We found that the contrast decreases with
respect to the spatially increasing fiber core diameter. Figure 7(c) shows the intensity distribution
on the fiber output face for the fiber core diameter of 50 μm; note that the contrast is always close
to 1, which is used in the current system.

4.3 Tip-Tilt of the Dynamic Mirror Impact on Contrast Performance

The dynamic mirror M1 is mounted on a commercial translating stage with a pitch and roll that
induce a tilt during M1 translation. We assume that the tilt α of M1 is around the vertical axis

Fig. 8 (a) Illustration of ray propagating to the system with the angle of incident due to the effect of
extension of fiber core. (b) Schematic of the linear tilt induced during the displacement of the
dynamic mirror.
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ðO; ηÞ and that α varies linearly with respect to the mirror position according to the following
law: α ¼ Lαmax, as shown in Fig. 8(b).

The intensity of the beam incident on the detector by point M located at coordinate ðν; ηÞ at
time ti is

EQ-TARGET;temp:intralink-;e004;116;687IMðν; DÞ ¼ E2
0½1þ cosð2π · OPDMðν; DÞ∕λrefÞ�; (4)

where

EQ-TARGET;temp:intralink-;e005;116;643OPDMðν; DÞ ¼ 2Dð1þ αmaxνÞ: (5)

The intensity incident on the detector is calculated by the integral of the intensity distributed
in the pupil plane. The yellow solid line in Fig. 7(b) represents the theoretical variation of the
contrast due to the M1 tilt in the case of αmax ¼ 21.9 μrad, corresponding to the illustrated inten-
sity distributions over the pupil plane fringe pattern in Fig. 7(d).

As shown in Fig. 7(b), we notice that the theoretical contrast variation due to the M1 tilt fits
perfectly to the measured contrast variation. This value is in very good agreement with the speci-
fication of the Newport M-ILS200CCL pitch, which is equal to 37 μrad in the typical case.

4.4 Instrument Line Shape

Ideally, the measurement of the FTS ILS would consist of measuring the spectrum provided by
the instrument for a monochromatic source. The only monochromatic source available for this
measurement was the metrology laser. Unfortunately, our attempts to simultaneously inject the
laser beam in the scientific and metrology fibers were not successful due to the interferences
between the scientific and metrology beams.

We thus decided to make a preliminary measurement of the ILS of FTS system by
(1) turning “ON” the metrology source, (2) removing the I-band filter located in front of
the detector, and (3) measuring the fringes induced by the leakage of the metrology signal
on the detector. This is done while displacing the dynamic mirror to adjust the OPD between
−OPDmax and þOPDmax.

It is important to mention that this ILS does not include the effect of the scientific fiber on the
ILS. However, as mentioned in the previous section, the fiber core diameter has a negligible
effect on the contrast, and the contrast is mostly driven by the tip-tilt of the dynamic mirror
during the displacement. We know that metrology follows an optical path close to the scientific
beam, and we thus decided to use it as a first approximation measurement to estimate the ILS of
the prototype.

We calculated the theoretical ILS without the mirror tilt effect (ILStheo) and with an effect of
mirror tilt (ILStheo;tilt). In the optical frequency domain, the frequency is noted as σ ¼ 1∕λ. The
theoretical FWHM of ILStheo is22 δσ ¼ 1.207∕OPDmax ≈ 0.80 cm−1 with δλ ≈ λ2δλ in the
wavelength domain. At the wavelength λ ¼ 633.178 nm, we deduce that δλtheo ≈ 0.032 nm

and thus the theoretical Rtheo ¼ λ∕δλtheo ≈ 19;744. Figure 9 shows the theoretical shape of
ILStheo in a blue dotted line and the shape of ILStheo;tilt in a yellow dashed line with a
FWHMtheo;tilt ¼ 0.033 nm. We notice that the central wavelength of the measured ILS, as
plotted in the red solid line of Fig. 9, is thus different by 1.5 pm from the theoretical central
wavelength. The potential contributors to this difference are (1) laser stability of 2 pm23 and
(2) tuning error of the laser.22 The FWHM is measured as FWHMILSmeas ¼ 0.033 nm (the same
as FWHMtheo;tilt), thus providing Rmeas ≈ 19;609.

4.5 Solar Spectrum Measurement Setup, Result, and Analysis

In this section, we present the results measured on January 27, 2021, from 3.30 PM to 4.30 PM
local time in Thailand (GMTþ 7). The sampling rate was set to 50 kHz (50,000 samples per
second), and the scanning velocity of the dynamic mirror was 1.8 mm∕s, which provided ∼10
samples per fringes at the wavelength of 633.178 nm. The amplitude of mirror displacement was
0.75 cm from the ZPD position, thus providing an OPDmax of 1.5 cm. The full scan between
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−OPDmax and OPDmax took <10 s in each measurement. We measured 40 individual interfero-
grams, which were processed individually using the method presented in Sec. 3. The final inter-
ferogram is the average of the 40 measured and processed interferograms.

Figure 10(a) shows the theoretical spectrum of atmospheric transmission and the Sun, and
the raw spectrum and the shifted spectrum of the Sun measured with our prototype are shown
in Figs. 10(b) and 10(c), respectively. The theoretical spectrum includes the contribution
of the theoretical Sun spectrum and of the atmospheric absorption lines, or telluric lines
as described hereafter. The theoretical solar spectrum was obtained from the Solar atmos-
pheric model adopted parameters and abundance.24 The synthetic spectrum of the Sun was

Fig. 10 The solar spectrum over the spectral range 740 to 870 nm. (a) The model spectrum cre-
ated from the convolution between the theoretical spectrum of the atmospheric transmission and
the Sun. (b) The raw measured spectrum and (c) the measured spectrum with the instrumental
shift.

Fig. 9 The three plots of ILS with the zoom in (inset plot) at central wavelength 633.178 nm. Blue
dotted line: ILStheo (without tilt effect). Red solid line: The measured ILS from of metrology leakage
in the FTS system. Yellow dashed line: ILStheo;tilt.
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generated using SYNTHE code.25 The observed solar spectrum was shifted due to the
Doppler shift from the Earth’s barycentric motion, gravitational redshift, and instrumental
shift.

The model of telluric lines was generated from a web-based service named Transmissions of
the AtmosPhere for AStronomical (TAPAS) data.26 TAPAS generates atmospheric lines using
LBLRTM code,27 HITRAN molecular lines,28 and atmospheric profiles stored in the ETHER
database, a French Atmospheric Chemistry Data Center ETHER (CNES and CNRS).

Although the input parameters were chosen to be matched with the observing condition, we
expect to see some differences in the line depth and position between the measured spectrum and
the theoretical model. The main cause of the differences comes from water molecules as they are
highly variable and inhomogeneous in the atmosphere. The available atmospheric data in the
database that TAPAS uses for generating a model are not available every moment, and it has to
interpolate between data from the closet available times. In addition, the current version of
TAPAS does not take into account the wavelength shift caused by winds. There are also some
discrepancies in the width and shape of individual lines because the actual ILSF is different from
the assumed Gaussian shape of the TAPAS. Nevertheless, in this study, the atmospheric trans-
mission lines were used for instrumental calibration; the differences in the line depth, width,
shape, and wavelength shift can be neglected for evaluating the current performance of our
FTS spectrograph.29

The instrumental corrections were determined from the wavelength-shift of telluric lines
between observed and theoretical transmission spectrum. Using the atmospheric transmission
line in the O2 A-band (759 to 772 nm) and H2O (810 to 840 nm) region as a reference, we
derived the instrumental shift of the FTS in frequency ð1∕λÞ of 3.3 cm−1, which is imple-
mented on the measured spectrum and represented in the blue solid line of Fig. 10(c).
The barycentric velocity of the Sun during the observation (RA ¼ 20h 30m 55s.69 , DEC =
−18° 26′ 17″.2) was calculated to be −482 to −551 m∕s using the barycorrpy Python pack-
age,30 and the gravitational redshift of 638� 6 m∕s determined by Hernández et al.31 was
adopted.

Figure 11 shows the regions of absorption lines between the theoretical spectrum in the red
dotted line and the raw measured spectrum (non-shifted) in the black dashed line. The two
regions of (1) the O2 A-band (759 to 772 nm) are shown in Fig. 11(a) and (2) the prominent

Fig. 11 The comparison of the model spectrum (red dotted line), the raw measured spectrum
(black dashed line), and the shifted measured spectrum (blue solid line). (a) The region of
telluric absorption lines over 750 to 770 nm. (b) The region of Sun absorption lines over
840 to 880 nm.
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Ca-II triplet absorption lines (849.8, 854.2, and 866.2 nm) are shown in Fig. 11(b). The measured
spectrum after applying the correction of the instrumental and Doppler spectral shifts are pre-
sented in the blue solid line.

4.6 Spectral Resolution and Radiometric Quality

Figure 12 shows the results of four absorption lines including envelope regions, which are con-
sidered to be isolated and not blended, to not have a too strong and too faint absorption line, and
to not overlap with the telluric lines for the spectral resolution and SNR determination. First, as
shown in Fig. 12(a), we present the region of the small intrinsic absorption line of iron (Fe-I) at
wavelength 846.8 nm, which is represented as the detection limit of the instrument and deter-
mines the wavelength resolved in spectral resolution. Second, we show the three distinctive Ca-II
triplet absorption lines at wavelength 849.8 nm in Fig. 12(b), 854.2 nm in Fig. 12(c), and
866.2 nm in Fig. 12(d). These three strong absorption lines are mostly used to study and inves-
tigate the magnetic field and temperature structure in Sun observations.32 Table 1 summarizes the
central wavelength, FWHM, and SNR measured on Fe-I and Ca-II triplet absorption lines. The
SNR is defined as the ratio between the depth of absorption line (Iabs), and the standard deviation
of its noise envelop (σ) SNR ¼ Iabs∕σ, as shown in Fig. 13.

The results presented in Fig. 12 and in Table 1 show that our spectrograph is clearly able to
detect spectral lines with widths varying between 0.0562 nm (Fe-I) and 0.185 nm (second Ca-II).
The overall profile, depth, and FWHM of the Ca-II absorption lines were well measured. We thus
deduce that our prototype is able to correctly measure some spectral lines with a width typically

Fig. 12 (a) Fe-I absorption line at 846.8 nm. (b) First Ca-II absorption at central wavelength
849.8 nm. (c) Second Ca-II absorption at central wavelength 854.2 nm. (d) Third Ca-II absorption
at central wavelength 866.2 nm.

Table 1 The spectral qualities of each absorption line in Fig. 12.

(a) Fe-I (b) First Ca-II (c) Second Ca-II (d) Third Ca-II

Central wavelength 846.8 nm 849.8 nm 854.2 nm 866.2 nm

FWHM 0.0562 nm 0.125 nm 0.185 nm 0.181 nm

SNR 17.6 24.9 22.9 34.9
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larger than 0.125 nm. The limit of detection of our instrument seems to be reached on the Fe-I
absorption line of FWHM equal to 0.056 nm corresponding to R ≈ 15;000. We were able to
detect the absorption line with an SNR close to 20, but we failed in measuring the correct depth
and reproducing the shape of the Fe-I absorption line. We conclude from these observations
that (1) the spectral resolution of our FTS is close to 15,000 over the spectral domain
[750 nm, 900 nm] and (2) the SNR is close to 20 at the limit of resolution for an incident flux
of about 1 μW.

5 Conclusion

This paper presents a fiber-fed FTS that is built from off-the-shelf optical components. The
instrument concept relies on a dual-output Michelson interferometer that provides a high
throughput and is insensitive to fiber modal noise. The cost and size of the FTS prototype are
comparable with that of a commercially available FTS-based spectrum analyzer, for example, the
OSA201C from Thorlabs. However, the custom developed FTS was specifically design for
astronomical observation. The size of the proposed system is about half size of the middle-
resolution fiber-fed Echelle spectrograph (MRES) of the TNT. The cost of the developed
FTS system would be about 10 times lower as compared with that of conventional spectrograph
such as MRES that currently are used by the TNT. The total throughput obtained from the devel-
oped FTS is 42% at wavelength 800 nm, which is higher than the throughput of MRES that is
approximately 26% at the same wavelength.

We investigated the contrast performance of the FTS system with two assumptions of the
spatial extension of the fiber and the tilt of the dynamic mirror during the displacement and found
that the contrast drop as a function of OPD is negligible for the developed FTS system. Based on
the result in Fig. 7(b), the contrast drop is currently dominated by the tilt of M1 induced by the
translating stage.

Furthermore, we found that the spectral resolution obtained from the FWHM of the measured
ILS is approximately 19,609 at a wavelength of 633.178 nm. The central wavelength of the
measured ILS jittered in the range of 1.5 pm from the theoretical central wavelength, which
may be caused by laser stability and a tuning error.

Finally, the performance of the developed system was verified by observing the Sun’s spec-
trum. The measured spectrum of the Sun in the range of 740 to 880 nm was compared with the
model atmospheric transmission and synthetic spectrum of the Sun with identified telluric and
atomic absorption lines. We found that this prototype is able to observe the solar spectrum with a
spectral resolution and SNR close to 15,000 and 20, respectively.

The next development steps will aim at reaching R ≈ 70;000 and an SNR higher than 10 on
stars of magnitude six over the full spectral range [400 nm, 1 μm]. The upgrades to reach these
objectives will consist of implementing a phase-lock amplifier, increasing the integration time to
1 ms, and installing a high-performance air-bearing translating stage. This upgrade will provide
the stability and the quality of movement of the dynamic mirror required to measure good quality
fringes and to increase the contrast of the interferometer with the objective to reach C > 0.3 at a
maximum OPD of 50 mm.

Fig. 13 Illustration of the region of the absorption line for calculating spectral resolution and SNR.
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6 Appendix A: Components Description

The part lists of FTS components and their manufacturer catalog numbers are presented in
Table 2 for the scientific channel and Table 3 for the metrology channel.

6.1 Scientific Channel

6.2 Metrology Channel
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Table 2 List of the components of the scientific channel in the FTS system.

Component Specification Manufacturer catalog number

Scientific fiber Multimode fiber, 0.22 NA, ∅50 μm core Thorlabs FG050LGA

Collimator L1 Achromatic doublets, AR-coated
f ¼ 19.0 mm, ∅1∕2 00

Thorlabs AC127-019-B

BS 50:50 Nonpolarizing cube, AR-coated Thorlabs BS014

Translating stage Motion controller with USB interface
– Motorized linear stage, 200 mm, DC motor

Newport ESP 301
– Newport M-ILS200CCL

Mirror M1, M2 Protected gold mirror Thorlabs PF10-03-M01

Spectral filter I-band region (700 to 900 nm) Astrodon Photometrics

Prism P1 Right-angle prism, AR coating on
hypotenuse

Thorlabs PS908H-B

Detector Balanced receiver with a large 8 mm
diameter

Newport 2307

Table 3 List of the components of the metrology channel in the FTS system.

Component Specification Manufacturer catalog number

Metrology source Single longitudinal mode (SLM_52371_2-258) Edmund optics

Metrology fiber Single-mode fiber yellow reinforced ∅3 mm
Furcation tubing

Thorlabs FT030-Y

Collimator L2 Achromatic doublets, AR-coated f ¼ 50.0 mm, ∅1 00 Thorlabs AC254-050-A-ML

Prism P2 Right-angle prism, AR coating on hypotenuse Thorlabs PS908H-B

Prism P3 Right-angle prism, AR coating on hypotenuse Thorlabs PS908H-B

Detector Optical receiver with a large 5.8 mm diameter
Silicon detector

Newport 2032
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