Quantum optomechanics has led to advances in quantum sensing, optical manipulation of mechanical systems, and macroscopic quantum physics. However, previous studies have typically focused on dispersive optomechanical coupling, which modifies the phase of the light field. Here, we discuss recent advances in “imaging-based” quantum optomechanics – where information about the mechanical resonator’s motion is imprinted onto the spatial mode of the optical field, akin to how information encoded in an image. Additionally, we find radiation pressure backaction, a phenomenon not usually discussed in imaging studies, comes from spatially uncorrelated fluctuations of the optical field. First, we examine a simple thought experiment in which the displacement of a membrane resonator can be measured by extracting the amplitude of specific spatial modes. Torsion modes are naturally measured with this coupling and are interesting for applications such as precision torque sensing, tests of gravity, and measurements of angular displacement at and beyond the standard quantum limit. As an experimental demonstration, we measure the angular displacement of the torsion mode of a Si3N4 nanoribbon near the quantum imprecision limit using both an optical lever and a spatial mode demultiplexer. Finally, we discuss the potential for future imaging-based quantum optomechanics experiments, including observing pondermotive squeezing of different spatial modes and quantum back-action evasion in angular displacement measurements.
Recently it has been proposed to search for dark matter using mechanical sensors, exploiting the fact that all dark matter candidates couple to the size or position of atoms. While focus has been directed towards analyzing signal from gravitational wave detectors and equivalence principle tests, a unique opportunity has emerged to develop compact detectors based on cavity optomechanical systems, which have recently achieved force measurements at the quantum limit. I'll discuss this concept from a practical perspective, highlighting a proposal to search for vector dark matter (dark photons) with optomechanical accelerometers. In this context, our lab is developing a new generation of ultra-sensitive accelerometers based on centimeter-scale silicon nitride membranes.
Recently it has been proposed to search for dark matter using mechanical sensors, exploiting the fact that all dark matter candidates couple to the size or position of atoms. While focus has been directed towards analyzing signal from gravitational wave detectors and equivalence principle tests, a unique opportunity has emerged to develop compact detectors based on cavity optomechanical systems, which have recently achieved force measurements at the quantum limit. I'll discuss this concept from an experimentalist's perspective, highlighting systems based on levitated dielectrics, silicon nitride membranes, and bulk acoustic wave resonators which are beginning to play an early role. In this context, our lab is developing a new generation of ultra-sensitive optomechanical accelerometers based on centimeter-scale silicon nitride membranes.
References:
[1] Manley et. al., PRL 126(6), 061301(2021)
[2] Carney et. al., QST 6(2), 024002 (2021)
[3] Manley et. al., PRL 124(15), 151301 (2020)
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.