We investigated the etching process especially for the integrated InGaAs/InP multiquantum-well laser. Two different
ways of etching process were demonstrated, which are RIE followed by selective wet etching and selective wet etching
only. The latter one showed ideal interface between active region and passive waveguide after regrowth. This etching
process is simpler and more effective than the first one. Using this process, we also fabricated a 1.79-μm DBR laser with
350-μm active region and 400-μm passive waveguide. The output power and threshold current and were demonstrated as
a function of temperature. The wavelength tuning characters were investigated with current and temperature changes. It
is demonstrated that this etching process can be successfully used to fabricate integrated photonic devices with
InGaAs/InP materials and the DBR laser can be a candidate for gas sensing system due to the single mode and large
tuning range.
Epitaxial growth of III-V compound semiconductors on Si has attracted significant attention for many years due to the potential for monolithic integration of III-V based optoelectronic devices with Si integrated circuits. There are three major problems for GaAs monolithic epitaxy on Si, respectively the large lattice mismatch, the difference in thermal expansion coefficient, and growth of a polar material on a nonpolar substrate. Various dislocation reduction techniques have been proposed, such as graded SiGe buffer layers, thermal cycles annealing (TCA), and strained-layer superlattices (SLs) as dislocation filters. Unfortunately, these methods generally require relatively thick epitaxial layers and/or complex epitaxial process. This study relates to the heteroepitaxy of GaAs on nanopatterned Si substrates using the selective aspect ratio trapping method. The dislocations originally generated at the GaAs/Si interface are mostly isolated by the SiO2 side wall. High-quality GaAs nanowires have been grown on Si(001) substrates by metal-organic chemical vapor deposition. A method of two-step epitaxy of GaAs is performed to achieve a high-quality GaAs layer with a 217 arcsec narrow FWHM of HRXRD. Material quality was confirmed by Scanning electron microscope (SEM) and transmission electron microscopy (TEM). We also simulated the distribution of the light field on the nanoscale GaAs layer surround by Ag films used the FDTD method. The light field confined well in the 250nm width GaAs nanowire which can be used in the nanolasers on Silicon as light sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.