As a kind of distributed optical fiber sensor, Optical Frequency-Domain Reflectometry (OFDR) can realize high spatial resolution distributed strain/temperature measurement. A method of measuring Rayleigh backscatter spectrum shift by cross-correlation calculation is widely adopted in OFDR sensor system. The other approach is based on the phase shift induced by the strain/temperature variation. In this paper, we propose a digital demodulation method to achieve it. Firstly the output of the photon detector is Fourier transformed and the phase information is obtained. The cross-correlation method and phase demodulation method are compared based on the theoretical and numerical analysis. The result shows that the spatial resolution (SR) of strain/temperature sensing is decided by the sweep range of the tunable laser source, while this parameter is much larger in traditional scheme. However, better stability can be achieved in cross-correlation scheme for sharp varying strain/temperature.
KEYWORDS: Demodulation, Data acquisition, Reflectometry, Photodetectors, Linear filtering, Bragg cells, Data storage, Electronic filtering, Heterodyning, Digital filtering
We propose an electrical I/Q demodulation scheme to decrease the sampling rate and computational cost in coherent phase-sensitive Optical Time-Domain Reflectometry systems. The IF signal from the photon detector and the local-oscillator from the acoustic-optic modulator driver are splited into two parts, respectively. One of local-oscillators is 90°shifted, then the signals and LOs are cross-mixed and the outputs are low-pass filtered to obtain the I/Q signal. Besides of the save of computational cost, the sampling rate and data storage is reduced at least 1.6 times. At last, a quantitative measurement of a 50 Hz vibration is successfully demonstrated in the experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.