Contour-based OPC modeling has recently arisen as an alternative to the conventional CD-based method. In this work, an innovative flow is proposed to improve the quality of the final calibrated model by using SEM image contours. Layout pattern sampling technique should be introduced into this flow, which could not only ensure adequate coverage including IPS and pattern diversity, but also minimize the data collection effort. In this study, we have developed an automated high-precision contour extraction method to obtain good and reliable contours that were in good agreement with traditional CD-SEM measurements. The OPC model calibration was built by using the high-precision SEM contours, and we compared the contour-based method with conventional CD measurements. Finally, the model error RMS of the calibration and verification process could be fed back to the layout pattern sampling, which could benefit the sustainable improvement of the predictive ability of the model.
A lithography tool-matching (scanner matching) method based on covariance matrix adaptation evolution strategy is proposed to effectively reduce critical dimension errors due to inter-scanners differences by optimizing illumination sources with pixelated sources sampling. With a one-dimensional line/space mask pattern as the matching target, we have simulated matching scanners with annular, dipole, quasar and freeform sources by the proposed method. The results of these simulations show that the root-mean-square of critical dimension error was reduced by more than 90% after matching. Compared with matching methods based on other heuristic algorithms, such as self-adaptive differential evolution (JADE), particle swarm optimization (PSO) and genetic algorithms (GA), this method has effectively improved the efficiency of scanner matching, and achieved excellent matching results at the same time. Simulations have shown the effectiveness of the proposed method on scanner matching of standard-illumination sources and freeform-illumination sources. Simulations verify the stability of the proposed method.
Source mask and polarization optimization (SMPO) is a promising extension of the widely used resolution enhancement technology, source mask optimization (SMO), to further enhance chip manufacturability beyond 28-nm node. Our work is aimed to develop an efficient gradient-based SMPO method by employing the hybrid Hopkins–Abbe imaging model to fulfill the goal. In addition to source and mask variables, the model is adapted to also include polarization variables to realize the optimization. Compact formulas for forward and backward model application are derived. The computation benefits from precomputed transmission cross coefficients and features high efficiency. Validity of the method is confirmed by case studies. For dense array pattern case, the optimal source and polarization can be found analytically. SMPO optimized results match well with the theoretical expectations. In addition, process window, mask error enhancement factor, and normalized image log-slope for the studied cases all get improved over the counterpart SMO results, which employ commonly used polarization. Runtime analysis shows the method is computationally efficient. Our work provides a valid way to optimize polarization together with source and mask.
The placement and size of SRAF (sub-resolution assisted feature) can greatly affect the overlapped process window. The time-consuming inverse lithography technology (ILT) can provide the co-optimization for both main pattern and SRAFs, which can guarantee the results with high precision. Rule-based SRAF (RBSRAF) offers the efficient application in large scale layout, which relies mostly on the design of test patterns and the corresponding empirical data on wafer. Our paper demonstrates a methodology of SRAF rule extraction and insertion based on ILT. The SRAF rules are extracted from the results of ILT and inserted by the RBSRAF, which ensures the reliability of the SRAF rules and shortens the development cycle. The hotspots areas with substandard process variation (PV) band are then repaired by ILT tools. Besides, the SRAF printing model can further refine the placement and dimension. The experiment results validate the feasibility of our methodology to be applied in large scale layout finally.
In optical lithography, aberrations induced by lens heating effects of a projection lens lead to degradation of imaging quality. In order to compensate for thermal aberrations, it is crucial to apply an accurate method for thermal aberration prediction. An effective and accurate method for thermal aberration prediction is proposed. A double exponential model is modified in respect of the timing of exposure tools, and a particle filter is used to adjust the double exponential model. Parameters of the model are updated recursively pursuant to the aberration data measured during the exchange of wafers. The updated model is used to predict thermal aberrations during the following exposure of wafers. The performance of the algorithm is evaluated by the simulation of a projection lens for argon fluoride lithography. Simulation results show that predictive errors of primary defocus and astigmatism are significantly reduced, and the mean value of wavefront error in the whole field of view is reduced by about 30% in a vertical line/space pattern. The proposed method is easily adaptable to different types of aberration measurement error.
With the application of source mask optimization (SMO) technology in the 28nm and below nodes photolithography machine, the freeform pupil illumination technology has been widely utilized to achieve resolution enhancement for various complex patterns. The freeform illumination module (FIM) equipped with micro-mirror array (MMA) are proposed, which could realize arbitrary pupil by adjusting the angle position distribution of MMA. Therefore, it is necessary to research the freeform pupil illumination technology in immersion photolithography machine. An excellent performance optical system for FIM mainly including homogenization unit, micro-lens array (MLA), MMA and Fourier transform lens is proposed in this paper. The homogenization unit is used to increase the uniformity of the beam incident onto MMA. The beam incident onto MLA is divided and focused on MMA. The focused sub-beams are reflected by micro-mirrors and then incident into Fourier transform lens. And the freeform pupil is generated at its back focal plane. In order to verify the feasibility of the designed optical system, three freeform pupils optimized by SMO are input into the designed FIM and the corresponding simulated pupils are exported. Furthermore, the photolithography performance simulations of the optimized and simulated pupils are implemented in optical model. The results indicate that their critical dimension (CD) differences are less than 0.5nm RMS for thousands of patterns in 40nm-80nm, such as line end, line space, contact hole, end to line, SRAM et. al., which shows that the excellent performance of the designed FIM.
The resolution limit is one of the key performance specifications of photolithography machine. And off axis illumination is one of the important resolution enhanced technologies. The generally used illumination modes include conventional, annular, quadrupole and dipole. And their performance is expressed by the characteristic parameters. To guarantee these parameters, the pupil correction unit should be adopted. Therefore, it is necessary to study the pupil correction technology for photolithography. In order to achieve flexible pupil correction, a method with correction finger is studied, which could change the regional energy by partial blocking effect. It is available to reduce regional energy by adjusting the width and length of correction finger. As a contrast, a method with grayscale filter is also analyzed. The grayscale filter has uniform transmission distribution in every region. The higher energy region corresponds to lower transmission distribution to achieve the energy balance. The comparison of the two pupil correction methods are analyzed firstly. The analysis results show that the two methods could improve pupil performance significantly and achieve the same correction results. Furthermore, the photolithography performance simulation is implemented. The results indicate that the critical dimension (CD) and H-V bias of the corrected pupils are improved consistently compared with the uncorrected pupils. In the application perspective, the method with correction finger is more flexible because its length could be adjusted to change relative blocked energy. However, the grayscale filter has to be replaced to change its correction effect.
In optical lithography, lens heating induced aberrations of a projection lens lead to degradation of imaging quality. In order to accurately compensate for thermal aberrations by integrated manipulators in projection lens, it is crucial to apply an accurate method for thermal aberration prediction. In this paper, an effective and accurate method for thermal aberration prediction is proposed. Double exponential model is simplified in respect of the timing of exposure tools, and particle filter is used to adjust the parameters of the double exponential model. Parameters of the simplified model are updated recursively pursuant to the aberration data measured during the exchange of wafers. The updated model is used to predict thermal aberrations of the lens during the following exposure of wafer. The performance of the algorithm is evaluated by simulation of a projection lens for ArF lithography. Maximum root mean square (RMS) value of perdition error of thermal aberration under annular illumination and dipolar illumination are reduced by 68.3% and 76.1%, respectively. The proposed method is also of well adaptability to different types of aberration measurement error.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.