By femtosecond-laser-based modification of polydimethylsiloxane (PDMS), we fabricated an electrically conductive structure composed of β-silicon carbide (β-SiC) on a PDMS thin film for strain sensing. With an increase in applied strain, i.e. smaller bend radii of the conductive structures, the conductivity of the structure decreased significantly. The result indicates that the resistance of the conductive structure has high sensitivity to strain, leading to potential applications such as real-time monitoring of human motion.
We experimentally demonstrated formation of electrically conductive structures by modifying native polydimethylsiloxane (PDMS) with femtosecond laser. By irradiating femtosecond laser pulses to native PDMS, black structures with electrical conductivity were formed. Analyses using X-ray diffraction (XRD) show that the formed structures were composed of β-silicon carbide (β-SiC). Our technique enables the spatially selective formation of β-SiC on the surface of PDMS, leading to open a novel route to develop a simple method to fabricate flexible or stretchable MEMS devices with SiC microstructures.
In this work laser-assisted methods for metal nanostructures formation and their application as active substrates in Surface Enhanced Raman Spectroscopy are presented. The nanostructures are fabricated by laser processing of gold thin films deposited on low cost substrates as glass, ceramic, polymer and paper. The films are deposited by classical PLD technology. The produced films are then processed by nanosecond pulses delivered by nanosecond Nd:YAG laser system. At certain conditions the laser treatment leads to formation of discrete nanostructure on the substrate surface. Femtosecond Pulsed Laser Deposition in air is also applied for direct deposition of gold nanostructure. In another set of experiments gold nanoparticle colloids are fabricated by laser ablation of gold target in chloroform. The fabricated structures are then tested as active systems in SERS, as detection of pesticides (DDT), nitrates (NH4NO3), and drugs (Methylene blue) is demonstrated. The obtained results show that these nanostructures can be efficiently used in the detection and monitoring of materials with a high social impact.
A method to fabricate metal nanowire gratings and dotted structures on substrates by using femtosecond laser is proposed and experimentally demonstrated. By irradiating femtosecond laser pulses to a platinum thin film deposited on a fused silica substrate, platinum nanowire gratings, which periodicities were comparable to or less than half the laser wavelength, were fabricated. The structures were experimentally analyzed with scanning electron microscopy (SEM), cross sectional imaging with focused ion beam (FIB), and atomic force microscopy (AFM). Moreover, dotted structures were formed in a self-organized manner by changing the number of pulses. The method presented has potential to be used as a simple and high-throughput process for fabrication of metal nanostructures for optical, electrical, and biomedical devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.