Spatial-Domain Filtering 9

Spatial-Domain Convolution Filters

Consider a linear space-invariant (LSI) system as
shown:

x(m)——p LSI ——Ppy(m)

The two separate inputs to the LSI system, x;(m) and
x9(m), and their corresponding outputs are given as

x1(m) — y1(m) and xo(m)— yo(m)
Thus, an LSI system has the following properties:

¢ Superposition property
A linear system follows linear superposition.
Consider the following LSI system with two inputs
x1(m,n) and x9(m,n), and their corresponding outputs
y1(m,n) and yo(m,n).

x1(n,m) h(m.n) }yl(n,m)

x2(n,m) y2(n,m)

The linear superposition is given as
x1(m,n) +x9(m,n) — y1(m,n) + yo(m,n)

e Space invariance property

Consider that if the input x(m) to a linear system is
shifted by M, then the corresponding output is also
shifted by the same amount of space, as follows:

x(m—-M)— y(m - M).

Futhermore, h(m,n;m',n") = Tr[d(m-m',n-n")] = h(m-
m',n—-n';0,0), where Tr is the transform due to the
linear system, as shown in the above figure. Hence,
h(m,n;m',n') = h(m —m/,n —n'); the system is defined
as LSI or as linear time invariant (LTI).

o Impulse response property

A linear space-invariant system is completely
specified by its impulse response. Since any input
function can be decomposed into a sum of time-
delayed weighted impulses, the output of a linear
system can be calculated by superposing the sum of
the impulse responses. For impulse at the origin, the
output is A(m,n;0,0) = Tr[é(m - 0,n - 0)].
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Convolution

As a consequence of LSI properties, the output of
a linear shift-invariant system can be calculated by
a convolution integral since the superposition sum
simplifies to a convolution sum due to the shift-invariant
property. The output of an LSI system is given as

y(m) = f_oo f(m,2)x(z)dz

Following the shift invariance of LSI, convolution is
obtained, given as

y(m) = f_oo flm—-2)x(z)dz

Convolution describes the processing of an image within a
moving window. Processing within the window always
happens on the original pixels, not on the previously
calculated values. The result of the calculation is the
output value at the center pixel of the moving window. The
following steps are taken to obtain the convolution:

1. Flip the window in x and y.
2. Shift the window.

3. Multiply the window weights by the corresponding
image pixels.

4. Add the weighted pixels and write to the output
pixel.

5. Repeat steps 2—4 until finished.

A problem with the moving window occurs when it
runs out of pixels near the image border. Several ‘trick’
solutions for the border region exist:

o Repeat the nearest valid output pixel.

e Reflect the input pixels outside the border and
calculate the convolution.

e Reduce the window size.
o Set the border pixels to zero or mean image.

e Wrap the window around to the opposite side of
the image (the same effect produced by filters
implemented inthe Fourier domain), i.e., the circular
boundary condition.
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Convolution and Correlation in the Fourier Domain

Correlation is defined in the spatial domain, and the
inverse Fourier transform must be performed to return to
the spatial domain. In the case of autocorrelation,

F{f(x)® g(x)} =Fu)G*(u)
reduces to
F{f(x)® f(x)} = |F(w)?

The inverse of this intensity spectrum generates the
autocorrelation output:

f(x)e f(x)=F 1 F(u)?

The process of multiplying a Fourier transform by F*
and then taking the inverse transform is called matched
filtering. This Fourier transform property of correlation
forms the basis of performing matched filtering in a
computer using FFTs.

Transform of a transform: Taking the transform of a
transform reproduces the original function with its axes
reversed:

F{F(u,v)} = f(-x,-y)

Optically, a lens performs a Fourier transform on its input
at the Fourier plane. Interestingly, it actually performs
a forward transform. This property explains why an image
is flipped at the output when two lenses are used to image
an input. It is because two lenses perform two forward
transforms.

Convolution: The most famous property of the Fourier
transform is the transform of convolution property, which
states that the Fourier transform of a convolution of two
functions is obtained by simply multiplying the individual
Fourier transforms:

F{f(x) * g(x)} = F(u)G(u)
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Spectrum of a Finite Periodic Signal

Single pulse: Assume a rectangular pulse as shown in
(a). Its spectrum is a sinc function [sinc(x)/x], as shown
in (b).

]
nnoo.
A

(e) (f)

Infinite periodic series: If a periodic signal, as shown
in (c), is created by repeating the pulse, this case is
equivalent to convolving with a series of impulse functions
(remember that in sampling, it was a multiplication). The
frequency domain will be modified by a multiplication with
the spectrum of this impulse series.

Spectrum: The spectrum of the periodic function
will be a series of impulses that have an envelope
like the sinc function, as shown in (d). As a result,
the spectrum of this periodic function is discrete.

Truncated periodic series: Assume that instead of an
infinite series, the periodic function is truncated at a width
A, as shown in (e). This is equivalent to multiplying by a
huge rectangular function.

Spectrum: The spectrum will be modified by con-
volution with the spectrum of this huge rectangular
function, which is a narrow sinc function of width
1/A. Imagine erecting a narrow sinc function at the
location of the impulse function in the Fourier do-
main, as shown in (f).
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Spectrum of a Finite Periodic Signal (cont.)

Mathematically, the single rectangular pulse is given as
rect(x/a) < sinc(au)

The periodic rect function is expressed as a convolu-
tion with a series of impulse functions:

rect(x/a) ® Z 5(x—nb) < sinclau)- Z 5(u —n/b)

The Fourier transform is equivalent to a series of impulses
the magnitude of which is enveloped by a sinc function,
sinc(au):

[rect(x/a)® ) 5(x — nb)|rect(x/A) —
[sinc(au)- ) 8(u —n/b)]® sinc(Au)

Limiting the number of the rect series by a huge rect with
width A produces a very narrow sinc function sinc(Au)
convolving the series of delta functions that are under
another sinc envelope, sinc(au). Thus, the delta functions
acquire a certain width due to this narrow sinc convolving
with it.

Assume that the rectangular series is replaced by a
triangular function:

tri(x/a) — sinc?(au)

This will thus change the envelope of the spectrum
from sinc to sinc2. The spectrum shown in (d) on the
previous page will be modified by the envelope. However,
a finite width on the series will have the same effect of
erecting a sinc at the bottom of the impulse functions.
Mathematically, the change of the function sinc(Au) to
sinc®(Au) in the above equation will be the spectrum for
the finite triangular series.

When such a pulse train is passed through a communi-
cation channel with finite bandwidth (or a lens with fi-
nite aperture), the spectrum will be truncated. The result-
ing rectangular pulse train will appear smoothed at the
edge as the high-frequency content is minimized by the
bandwidth. This effect explains why imaging with a finite-
aperture lens causes degradation in the fine details of an
image because the aperture acts as a low-pass filter.
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