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14.1 Introduction 
In the wide range of materials that are characterised by broad, relatively 
featureless optical spectra, the absorption of light in the ultraviolet-visible 
wavelength region is typically followed by rapid internal processes of dissipation 
and degradation of the acquired energy, the latter ultimately to be manifest in the 
form of heat. In more complex materials—those comprising a variety of light-
absorbing atomic or molecular components (chromophores) with optically well 
characterised absorption and fluorescence bands—the absorption of light is 
commonly followed by a spatial translation of the absorbed electromagnetic 
radiation between different, though usually closely separated, chromophores. The 
process takes place well before the completion of any thermal degradation in 
such materials. This primary relocation of the acquired electronic energy, 
immediately following photo-excitation, is accomplished by a mechanism that 
has become known as resonance energy transfer (RET).1–3 (At an earlier stage in 
the development of these ideas,4 the term ‘resonance’ was used to signify that no 
molecular vibrations were excited; however, such usage is now known to be 
relevant to few systems and has largely fallen into abeyance.) An alternative 
designation for the process is electronic energy transfer (EET); both terms are 
widely used, and in each case, the first letter of the acronym serves as a 
distinction from electron transfer.  

In complex multichromophore materials, the singular properties of RET 
allow the flow of energy to exhibit a directed character. Because the process 
operates most efficiently between near-neighbor chromophores, the resonance 
propagation of energy through such a system generally takes the form of a series 
of short steps; an alternative process involving fewer long steps proves 
considerably less favorable. In suitably designed materials, the pattern of energy 
flow following optical absorption is thus determined by a sequence of transfer 
steps, beginning and ending at chromophores that differ chemically, or, if the 
chromophores are structurally equivalent, through local modifications in energy 
level structure reflecting the influence of their electronic environment. Hence. 
individual chromophores that act in the capacity of excitation acceptors can 
subsequently adopt the role of donors. This effect contributes to a crucial, 
property-determining characteristic for the channeling of electronic excitation in 
photosynthetic systems;5 the same principles are emulated in synthetic energy 
harvesting systems such as the fractal polymers known as dendrimers.6  

The observation and applications of RET extend well beyond the technology 
of light harvesting, as will be demonstrated in later sections of this chapter. The 
phenomenon has an important function in the operation of organic light-emitting 
diodes (OLEDs) and luminescence detectors; in crystalline solids and glasses 
doped with transition metal ions, mechanisms based on RET are also engaged for 
laser frequency conversion. In the fields of optical communications and 
computation, several optical switching and logic gate devices are founded on the 
same principle. As we shall see, those possibilities have been considerably 
extended by a recent discovery that electron spin can be transferred along with 
the energy. In the realm of molecular biology, the determination of protein 
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structures and the characterisation of dynamical processes is furthered by studies 
of the transfer of energy between intrinsic or ‘tag’ chromophores; other 
ultrasensitive molecular imaging applications are again based on the same 
underlying principle. Further applications include energy transfer systems 
designed to act as analyte-specific sensors, and as sensitisers for photodynamic 
therapy. Last but not least, RET provides a rich ground for exploring the 
fundamental issues that arise from the nanoscale interplay of electromagnetism 
and quantum mechanics. 
 
14.1.2 The nature of condensed phase energy transfer 

In any nonhomogeneous dielectric material, the primary result of 
ultraviolet/visible absorption is the population of short-lived electronic excited 
states located in individual atomic/molecular/nanoscale centres. In general, this is 
immediately followed by one or more transfers of the acquired electronic 
excitation energy, commonly on an ultrafast timescale and with some associated 
losses such as vibrational dissipation. Given the broad compass of the term 
‘condensed phase,’ it is really quite astonishing that the RET concept is so 
pervasive, and the fundamental theory so extensively applicable. In crystalline, 
semicrystalline, or glassy media, the centres of absorption (and subsequent re-
emission) commonly take the form of ions, atoms, or colour centres; in other 
types of mediums they may be small molecules, electronically distinct parts of 
large molecules, or nanoparticles such as quantum dots. Where generality is 
intended in the following, the term ‘chromophore’ is used, subsuming the term 
‘fluorophore,’ which some employ to convey the frequently associated capacity 
to exhibit fluorescence. Although the energy flow that follows optical absorption 
is generally a multistep process, at the fundamental level, each elementary 
transfer step is a radiationless pairwise interaction, generally taking place 
between an electronically excited species termed the donor and an electronically 
distinct acceptor that is initially in its ground state. The theory is therefore based 
on pair couplings. 

The primary equations for pair RET are based on the interactions of 
nonoverlapping transition dipoles. Before pursuing the detail, however, it is 
worth observing that other forms of coupling are also possible, though less 
relevant to most systems of interest in the following account. For example, the 
transfer of energy between particles or units with significantly overlapped 
wavefunctions is usually described in terms of Dexter theory,7 where the 
coupling carries an exponential decay with distance, directly reflecting the radial 
form of the wavefunctions and electron distributions. Compared to materials in 
which the donor and acceptor orbitals do not spatially overlap, such systems are 
of less use for either device or analytical applications, largely because the 
coupled chromophores lose their electronic and optical integrity. This is the main 
reason that complex light-harvesting systems are commonly designed with 
nonconjugated linkages or spacer units between the chromophores, or else with 
the latter held on a host superstructure that prevents direct chromophore contact. 
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Parallels can be drawn with the way a dielectric layer operates in a simple 
electrical capacitor. In the alternative scenario, where spacer units act as a 
‘conductive’ bridge through delocalisation and mixing of their orbitals with the 
donor or acceptor orbitals, energy transfer is specifically expedited by the 
operation of a superexchange mechanism,8,9 which, despite the efficiency gains, 
compromises diagnostic applications. 
 
14.1.3 The Förster equation 

The first theoretical formulation of pair transfer that successfully identified the 
inverse sixth power distance dependence (with which the process itself is now 
almost universally associated) was made by Förster,10 and experimentally 
verified by Latt et al.11 Subsequently recast in quantum mechanical terms, this 
theory of ‘radiationless’ energy transfer has been very successfully applied for 
well over half a century and remains widely valid, although subject to certain 
conditions that were not originally understood. Before proceeding with the detail 
of the Förster equation, a caveat is therefore due. This concerns a 
misunderstanding of the relationship between ‘radiationless’ and ‘radiative’ 
energy transfer (the latter signifying successive but distinct processes of 
fluorescence emission by the donor, and capture of the ensuing photon by the 
acceptor). A full quantum electrodynamical treatment of the interaction to was 
needed to clarify and resolve this issue (details are given in Section 14.2.2). 
However, the reader should be aware that some textbooks still obscure the 
subject, wrongly treating radiationless and radiative energy transfer between a 
given chromophore pair as separate, potentially competing processes. 

To proceed, consider the pairwise transfer of excitation between two 
chromophores A and B. In the context of this elementary mechanism (which 
might be one RET component of a complex, multistep migration process), A is 
designated the donor and B the acceptor. Specifically, let it be assumed that prior 
excitation of the donor generates an electronically excited species A*. Forward 
progress of the energy is then accompanied by donor decay to the ground 
electronic state. Acquiring the energy, the acceptor B undergoes a transition from 
its ground to its excited state, as illustrated in Fig. 14.1. The excited acceptor B* 
subsequently decays either in a further transfer event, or by another means such 
as fluorescence.  

Because the A* and B* states are real, having measurable lifetimes, the 
process of energy transfer itself is fundamentally separable from the initial 
electronic excitation of A and the eventual decay of B; the latter processes do not, 
therefore, enter into the theory of the pair transfer. However it will need to be 
registered that other dissipative processes may be engaged (such features will be 
discussed in detail in later sections). In a solid, the linewidth of optical transitions 
manifests a degree of coupling of individual optical centres with their electronic 
environment (which, in the case of strong coupling, may lead to the production of 
phonon side-bands). Similar effects in solutions or disordered solids represent  
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Figure 14.1 Energetics of single-step resonance energy transfer, also showing the 
preceding excitation of the donor A and the concluding decay of the acceptor B. The 
boxes indicate lower (ground) and excited electronic states (here, designated as singlet 
states, though they need not be), and the vertical width represents a finite breadth on the 
energy scale. The transferred energy may be less than that initially acquired by the donor, 
due to dissipative processes; a similar remark applies to the acceptor.  

 
inhomogeneous interactions with a solvent or host, while the broad bands 
exhibited by chromophores in complex molecular systems signify extensively 
overlapped vibrational levels, including those associated with skeletal modes of 
the superstructure. In each case, the net effect is to allow pair transfer to occur at 
any energy level within the region of overlap between the donor emission and 
acceptor absorption bands. 

Restricting consideration to donor-acceptor separations R substantially 
smaller than the wavelengths of visible radiation, the Förster theory gives the 
following expression for the rate of pairwise energy transfer wF, for systems 
where the host material for the donor and acceptor has refractive index n (at the 
optical frequency corresponding to the mean transferred energy): 
 

 
2 4

F 4 6 4
*
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( ) ( )

8 A B
A

c d
w F

n R

   
 

  . (14.1)
 

 
In this expression, FA() is the fluorescence spectrum of the donor 

(normalised to unity); A* is the associated radiative decay lifetime (related to the 
measured fluorescence lifetime fl through the fluorescence quantum yield 

fl *A   ); B() is the linear absorption cross-section of the acceptor;  is an 

optical frequency in radians per second; and c is the speed of light. The spectral 
functions FA and B are mathematically defined and discussed in detail in Section 
14.2.1. The  factor in Eq. (14.1) depends on the orientations of the donor and 
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acceptor, both with respect to each other, and with respect to their mutual 
displacement unit vector R̂ , as follows: 
 

 ˆ ˆˆ ˆ ˆ ˆ( ) 3( )( )A B A B    μ μ R μ R μ   (14.2) 

 
For each chromophore, μ̂  designates a unit vector in the direction of the 
appropriate transition dipole moment (see Section 14.2.1). Unfavorable 
orientations can reduce the rate of energy transfer to zero; others, including many 
of those found in nature, optimise the transfer rate. The angular disposition of 
chromophores is therefore a very important facet of energy transfer, and one that 
invites careful consideration in the design of light-harvesting materials. To 
correct a common misconception, note that transfer is not necessarily precluded 
when the transition moments lie in perpendicular directions, provided that neither 

is orthogonal to R (= R R̂ ). The most striking features exhibited by Eq. (14.1) are 
the dependences on distance and on spectral overlap, both of which will be 
examined in detail in following sections.  

In experimental studies of RET, it is usually significant that the electronically 
excited donor can in principle release its energy by spontaneous decay, and that 
the ensuing fluorescence radiation is detectable by any suitably placed 
photodetector. Because the alternative possibility (that of energy being 
transferred to another chromophore within the system) has such a sharp decline 
in efficiency as the distance to the acceptor increases, it is commonplace to 
introduce the concept of a critical distance R0, a separation at which the 
theoretical rates of RET and spontaneous emission by the donor are equal (now 
known as the Förster distance). The Förster rate equation is often cast in an 
alternative form, exactly equivalent to Eq. (14.1), explicitly exhibiting this 
critical distance:12 
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Here, 0R  is defined as the Förster distance for which the orientation factor 2 

assumes its isotropic average value, 2
3 .13 For complex systems, the angular 

dependence is quite commonly disregarded and the following simpler expression 
employed: 
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leading to a transfer efficiency T expressible as: 



Resonance Energy Transfer: Theoretical Foundations and Developing Applications 467 
 

 
 Τ 6

0

1

1 R R
 


 . (14.5) 

 
Typical values of the Förster radius range over a few nanometers. Thus, when a 
given electronically excited chromophore is within a distance R0 of a suitable 
acceptor, RET will generally be the dominant decay mechanism; conversely, for 
distances beyond R0, spontaneous decay will be the primary means of donor 
deactivation.  
 
14.1.4 Established areas of application 

In a host of multichromophore materials, RET represents a mechanism whose 
operation exerts a major influence on optical properties. Wide-ranging as these 
systems and applications are (several solid state device-oriented applications are 
to be discussed in later sections), the most widely studied and characterised 
examples are found in connection with light harvesting—both biological and 
synthetic. Following the capture of a photon by any such system, the RET 
mechanism dictates that the migration of the acquired energy from the site of the 
initial photoabsorption through to the site of its utilisation is at every stage 
subject to an inverse sixth-power dependence on distance. As a result, energy 
migration over distances beyond the Förster radius primarily operates through a 
series of short hops rather than one long hop. Commonly, these hops exhibit a 
‘spectroscopic gradient,’14 a term for the progressively longer wavelengths for 
absorption and fluorescence in successively visited chromophores (a feature to be 
studied in detail in Section 14.5.1). This is a property that makes a significant 
contribution to the high efficiency of photosynthetic and allied systems. 

In experimental science, one obvious application of the strong distance 
dependence is the identification of motions in molecules, or parts of molecules, 
that can bring one chromophore into the proximity of another; prominent 
examples in biology are the traffic across a cell membrane, and protein folding.15 
These and other such processes can be registered by selectively exciting one 
chromophore using laser light, and monitoring either the decrease in fluorescence 
from that species, or the rise in (again, generally longer-wavelength) fluorescence 
from the other chromophore as it enters into the role of acceptor. The judicious 
use of optical dichroic filters can make this fluorescence RET or ‘FRET’ 
technique perfectly straightforward (see Fig. 14.2). In cases where the two 
material components of interest do not display both absorption and fluorescence 
features in an appropriate wavelength range, molecular tagging with site-specific 
‘extrinsic’ (i.e., artificially attached) chromophores can solve the problem.  

In some applications, the actual distance between the chromophore groups is 
of specific interest. When the same two chromophores feature (in spatially 
different configurations) in the chemical composition of two different systems 
(again, a common feature in biology), the relative displacements of the 
chromophores can be quantitatively assessed on the basis of comparisons  
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 (a) (b) 
 

Figure 14.2 Schematic depiction of the spectral resolution of fluorescence from donor and 
acceptor species (based on cyan fluorescent protein donor and yellow fluorescent protein 
acceptor). (a) The transmission curve of a short-wavelength filter ensures initial excitation 
of the donor; a dichroic beam splitter and narrow emission filter ensure that only the 
(Stokes-shifted) fluorescence from the donor reaches a detector. (b) In the same system, 
a longer-wavelength emission filter ensures capture of only the acceptor fluorescence, 
following RET. 
 
between the corresponding RET efficiencies. Such a technique is popularly 
known as a ‘spectroscopic ruler.’16. Such elucidations of molecular structure 
usually lack information on the relative orientations of the groups involved, and 
as such, the calculations usually ignore the kappa parameter [Eq. (14.2)]. The 
apparent crudeness of this approach becomes more defensible on realising that 
even if it were to introduce a factor of two inaccuracy, the deduced group spacing 
would still be in error by only 12% (since 21/6 = 1.12). 
 
14.2 Electromagnetic Origins 

In this section, the detailed electromagnetic origins of RET coupling are 
considered. First it is shown how the Förster formula signifies transition dipole 
coupling, and the possible influence of other multipoles is considered. An outline 
is then given of the modern and fully rigorous quantum electrodynamical 
derivation. Some distinctive features of the latter—in particular, the short- and 
long-range behaviour—are then examined in detail.  
 
14.2.1 Coupling of transition dipoles 

The spectral functions that were featured in Eq. (14.1) can be written in terms of 
the fundamental quantum properties of the chromophores. Assuming the usual 
Born-Oppenheimer separation of electronic and nuclear motions, the 
mathematical definitions are expressible as follows, using Dirac notation: 
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Here, A and B are the magnitudes of the transition electric dipole moments for 
the donor decay and acceptor excitation, specifically given by: 
 

 * *;A A A B B B μ μ μ μ    , (14.8) 

where the  is the dipole operator and each  is an electronic state wavefunction. 
Furthermore, the indices m, n, p, and r in Eq. (14.7) are generic labels denoting 
vibrational sublevels, with each  representing an associated wavefunction and E 
the corresponding energy, and  denoting a population distribution function for 
the initial state of each species. Comparing the above results with Eqs. (14.1) and 
(14.2) reveals the intrinsic quadratic dependence of the energy transfer rate on a 
coupling of the form 
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which is, of course, the usual formula for the interaction of two static dipoles. 
However, the result given by Eq. (14.9) is not a conventional energy of 
interaction, but a quantum amplitude (strictly speaking, it is an off-diagonal 
matrix element connecting different initial and final states; only diagonal terms 
can directly signify energy). This is one of several important distinctions, the 
significance of which will shortly become more apparent when the quantum 
electrodynamical theory is developed.  

It is evident from Eq. (14.9), that the familiar inverse sixth-power distance 
dependence of RET owes its origin to the quadratic dependence of its rate on a 
coupling of transition electric dipoles. The result is, of course, applicable only 
when both the donor decay and the acceptor excitation transitions are electric 
dipole (E1) allowed. In general, the coupling is effected by a coupling between 
the lowest orders of multipoles (electric, or magnetic) that can support the 
necessary transition. In the Förster range, the distance dependence exhibits the 
form R – (P+Q+1) for the coupling of two transition electric multipoles EP-EQ, or 
two magnetic multipoles MP-MQ; while for the coupling of an electric multipole 
with a magnetic multipole, EP-MQ, the distance dependence is R– (P+Q).17,18 For 
example, the coupling of an electric dipole decay with an electric quadrupole 
excitation, E1-E2, has an R–4 distance dependence within the Förster range. 
However, it should be kept in mind that each unit increase in multipolar order, 
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and each substitution of an electric transition by a magnetic counterpart, lowers 
the strength of the coupling by a factor of the order of 10–2 to 10–3. The 
decreasing efficiency of successive multipole orders increasingly disfavors the 
role of RET in the decay of the donor, compared to other decay mechanisms.  
 
14.2.2 Quantum electrodynamics 

To develop a theory of RET from a fully rigorous basis, it makes sense to use a 
foundation in which quantum mechanics is used to describe the behaviour of both 
the matter and any electromagnetic fields that are involved. This is the 
framework of quantum electrodynamics (QED).19,20 This theory has the 
advantage that it naturally accommodates not only quantum mechanical but also 
relativistic principles, so that it properly delivers retarded solutions (which will 
shortly prove to be a matter of key significance for RET). The wider successes of 
QED, such as its prediction of the Casimir effect, are well known; less well 
known is the fact that it alone can rigorously explain the much more familiar 
process of spontaneous emission. Moreover, a good case can be made that even 
the use of electric and magnetic multipoles is only defensible in the context of a 
fully quantum electrodynamical theory.21 The development of a QED theory of 
RET, which began over forty years ago with pioneering work by Avery, 
Gomberoff, and Power,22,23 culminated twenty years later in a unified theory24 
that has ramifications that continue to be explored today.25 A concise exposition 
is presented below.  

A suitable starting point for the analysis is the following (exact) multipolar 
Hamiltonian for the simple RET system comprising chromophores labeled A and B: 
 
    int int radA BH H H H A H B H     , (14.10) 

 
where the first two terms are the unperturbed Hamiltonian operators for the 
chromophores, and the two intH operators represent interactions of the radiation 

field with A and B. The final term, Hrad , is the radiation Hamiltonian which, 
because it, too, is an operator, is always part of the sum, even when no photons 
are present. It becomes immediately evident that no single term in Eq. (14.10) 
links A with B; in other words, no static or longitudinal coupling occur. Hence, 
any form of coupling between the two chromophores has to be mediated by their 
individual interactions with the radiation field. This is an issue that it will be 
useful to revisit at the end of this section.  

To continue, in the electric-dipole approximation, each int ( )H   is given 
by the usual dipole coupling formula 
 

 int ( ) ( ) ( )H   μ e R


  . (14.11) 
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In Eq. (14.11), the electric-dipole moment operator ( )μ   operates on matter 

states, and the transverse electric-field operator ( )e R  on electromagnetic 

radiation states; R  is the position vector of the chromophore labelled . The 

electric field operator can be cast in the form of a mode summation, taken over 
optical wavevectors p, and polarisations , which is usually written as follows:26 
 

                      
1 2

i i

0

i
2

/

. .

,

cp
a a

V
.    


 

   
       

 p R p R†

p
e R e p p e e p p e


(14.12) 

 

In this mode expansion, ( ) ( )e p  is the polarisation unit vector (an overbar 

denoting complex conjugate), V is an arbitrary quantisation volume, and ( ) ( )a p  

and †( ) ( )a p , respectively, are the photon annihilation and creation operators for 

the mode (p, ). These ladder operators act on the radiation states through the 
relations 
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and as such, engage H int  in the fundamental processes of photon creation and 
annihilation. 

The initial and final states for the RET process can be written as *; ;0A B   

and *; ;0A B  , respectively, each ket indicating the electronic states of the two 

chromophores and the number of photons present. For simplicity, vibrational 
levels are left out of the derivation, as they are readily incorporated at the end of 
the calculation. To effect the transition between the given system states, time-
dependent perturbation theory is applied with Eq. (14.11) as the perturbation 
operator. The overall process can be achieved only by applying this operator 
twice, necessarily signifying the creation and annihilation of a photon; the 
leading contribution to the quantum amplitude M is therefore second order: 
 

 
 
int int

r i r

f H r r H i
M

E E


 , (14.14) 

 
where i, f, and r denote initial, final, and intermediate states of the system and E 
signifies an energy. Since the photon will be unobservable and acts only in the 
capacity of effecting the coupling, it is termed a virtual photon, and its creation 
can take place at either A or B. Two time orderings therefore arise: (a) the virtual 
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photon can be created at A (effecting the decay of the donor-excited state) and 
subsequently annihilated at B (effecting the acceptor excitation); (b) the virtual 
photon may be created at B (with the acceptor excitation) and annihilated at A 
(with the donor decay). These two possibilities are illustrated by Feynman 
diagrams in Fig. 14.3, and by a state-sequence diagram in Fig. 14.4. The counter-
intuitive nature of case (b) does not preclude its inclusion in the calculation; both 
here and in case (a), the mode expansion in the electric field operator Eq. (14.12) 
moreover requires summation over all optical frequencies. Physically, it can be 
understood that exact energy conservation is not imposed during the interval 
between creation and annihilation of the virtual photon, i.e., the ultrashort photon 
flight-time. This, a key feature of virtual photon behaviour, is entirely consistent 
with the time-energy Uncertainty Principle. When the whole system enters its 
final state, the balance of energy conservation is once again restored.  
 

 
 

Figure 14.3 Feynman time-ordered diagrams corresponding to the two quantum 
amplitude contributions to RET, with time progressing upward. In (a) the virtual photon 
propagates from A to B, and in (b) it moves from B to A. 

 

 
 

Figure 14.4 State-sequence diagram for RET, progressing from the initial system state of 
the left, through intermediate states, to the final state on the right. In each box, the two 
circles designate the states of A and B, a filled circle denotes an electronic excited state, and 
an open circle the ground state;  denotes the presence of a virtual photon. The lower 
pathway corresponds to the Feynman graph (a), and the upper pathway to (b) in Fig. 14. 3. 
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Figures 14.3 and 14.4 readily facilitate determination of the two 
contributions to the quantum amplitude Eq. (14.14), which emerge as: 
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where cp  is the virtual photon energy and k is defined through the equation for 
overall energy conservation: 
 
 * *A A B BE E E E ck     . (14.16) 

 
The wavevector and polarisation summations in Eq. (14.15) require substantial 
manipulation for evaluation by any of several standard techniques, detailed in the 
original papers and subsequent reviews.27 Implementing the necessary tensor 
calculus, the result emerges in a form concisely expressible as follows: 
 

 ( , )Ai ij BjM V k R  , (14.17) 

 
using the convention of implied summation over repeated vector and tensor 
indices i and j. In Eq. (14.17), the two transition dipole moments for the donor 
decay and acceptor excitation transitions are coupled by an E1-E1 coupling 
tensor defined by 
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It is of immediate interest to note that Eqs. (14.17) and (14.18) can be interpreted 
as the interaction of a transition dipole at B with a retarded electric field E 

produced by a transition dipole source at A, as given by  ,j Ai ijE V k R . This 

exactly correlates with the SI result delivered by classical electrodynamics:28 
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These are key results, the implications of which will now be examined in detail. 
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14.2.3 Near- and far-field behaviour 

Before considering the rate result that ensues from the above QED treatment, 
some features of physical significance can be identified from the quantum 
amplitude. First, it is important to note that for short-range distances where 

«1kR  (signifying a length significantly smaller than the wavelength of the 
donor decay transition), Eq. (14.18) couples with the transition dipoles, as in Eq. 
(14.17), to deliver a result that equates exactly with the classical expression for 
the coupling, Eq. (14.19). The additional terms identified by QED, which come 
into play at larger distances, signify the intrinsic accommodation of retardation—
these are features that reflect the finite time taken for A and B to interact, in 
accordance with relativistic principles of causality.  

A second feature is manifest on effecting the tensor contraction VijRiRj 
(again, with implied summation over i and j), which identifies the longitudinal 
character of the coupling. It is evident that although the other terms in Eq. 
(14.18) deliver a finite result, the contribution from the last term is zero. Since 
the last term in Eq. (14.18) is in fact the long-range ( »1kR  ) asymptote, this 
result indicates that the far-field coupling is in fact fully transverse with respect 
to R, whereas near-field coupling is not (it has both transverse and longitudinal 
components).29 This behaviour is to be distinguished from the completely 
transverse character of the coupling field with respect to the virtual photon 
propagation vector, over all distances.  

Recalling the sum over wavevectors in the electric field expansion Eq. 
(14.12), it can therefore be concluded that only virtual photons whose 
wavevector p is essentially parallel to the separation vector R remain significant 
for energy transfer as the donor-acceptor separation increases towards infinity. In 
contrast, the short-range or near-field behaviour is consistent with an 
involvement of virtual photons propagating in various directions. This can be 
understood as a manifestation of position-momentum quantum uncertainty, as 
illustrated in Fig. 14.5. In other words, as the distance R increases, the virtual 
photon acquires an increasingly real character.29 To quote from a well-known  
 

 
 

Figure 14.5 In the near field of an emitter-donor particle, virtual photons propagate in every 
direction, and quantum uncertainty allows their interaction with nearby absorber-acceptor 
particles; as the distance between emitter and absorber increases, the signal experienced 
by the latter is increasingly dominated by photons propagating directly towards it. 
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textbook of elementary particle physics: ‘In a sense every photon is virtual, being 
emitted and then sooner or later being absorbed.’30 It is only the comparatively 
long lifetime, on a quantum timescale, of the photons we commonly observe that 
results in a disappearance of their virtual traits.  
 
14.2.4 Refractive and dissipative effects 

The above analysis, developed from Eq. (14.10), rigorously applies to a system 
of a single donor and acceptor with no other matter present. However, as most 
cases of interest concern the condensed phase, the electronic influence of 
surrounding or host material cannot in general be ignored, and we should include 
all atoms and molecules () in a sum, writing:  
 
      int int rad int

, ,
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 . (14.20) 

 
The last three terms in Eq. (14.20) collectively represent an effective radiation field 
operator whose eigenstates signify modes in which the photons are ‘dressed’ by the 
electromagnetic influence of the host. Strictly speaking, these are polaritons, 
though the distinction is not important if one is dealing with frequencies at which 
the host is relatively transparent. By a lengthy development of theory, the effect of 
making this correction is that the coupling tensor Eq. (14.18) emerges in the 
following modified form,31 assuming Lorentz local field factors are assimilated into 
the expressions for the spectral functions FA() and B(): 
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where n() is the complex refractive index for electromagnetic radiation with an 
optical frequency  = ck. 
 
14.3 Features of the Pair Transfer Rate 

By use of the Fermi rule,32 the rate of energy transfer between a donor and 
acceptor pair has a quadratic dependence on the quantum amplitude. The 
quantum electrodynamical treatment of RET (discussed in the previous section) 
delivers a result that reveals important additional terms compared to the Förster 
Eq. (14.1), the extra terms arising from the influence of the bracketed terms, 
linear and quadratic in n()kR, in the quantum amplitude.21 The full result is 
conveniently represented as follows:33 

 

 w w w w  F I rad  , (14.22) 
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In these expressions, the kappa orientational function of Eq. (14.2) is now 
generalised: 
 

 ˆ ˆˆ ˆ ˆ ˆ( ) ( )( )j A B A Bj    μ μ R μ R μ . (4.24) 

 
The first term of Eq. (14.22), wF, is the usual Förster rate, identical to Eq. 

(14.1) if the refractive index is taken as a constant. The second contribution, wI, 
is a correction that comes into play at distances beyond the near field, where the 
assumption «1kR   no longer holds. The third term, wrad, which dominates over 
both other contributions when »1kR  , equates exactly with the rate of acceptor 
excitation that results from the capture of a photon spontaneously emitted by the 
donor; i.e., a process of radiative transfer, its R–2 dependence fittingly designating 
the familiar inverse square law. This radiative term manifests the long-range 
emergence of the coupling photon into a real character. Revisiting the underlying 
QED theory in order to disentangle the quantum pathways, recent work34 has also 
shown that this long-range behaviour is completely identifiable with the 
physically more intuitive sense of propagation for the virtual photon—case (a) in 
Fig. 14.3, or the lower pathway in Fig. 14.4. In the same regime, the contribution 
from case (b) ‘backward’ propagation drops off as R–8. Nonetheless, it should be 
emphasised that (a) and (b) are equally important in the short range, where both 
run with R–6. 

The discovery that both Förster ‘radiationless’ and radiative coupling are 
components of a single mechanism that operates over all distances (beyond 
wavefunction overlap) has resulted in a paradigm shift in the understanding of 
RET, and is the reason that QED theory has been termed a unified theory.24 This 
theory is valid over a span ranging from the nanoscale up to indefinitely large 
distances; Förster energy transfer is the short-range asymptote and radiative 
transfer the long-range asymptote. Moreover, there is no competition between 
these processes, previously considered distinct, as they prove to be but aspects of 
a single coupling mechanism. However, the theory establishes more than this; it 
also addresses an intermediate range where neither the radiative nor the Förster 
mechanism is fully valid, because if ~ 1kR  to the nearest order of magnitude 
(suggesting distances in the hundreds of nanometers range), then all three terms 
in Eq. (14.23) contribute significantly. Although different kappa factors (3 and 
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1) characterise wF and wrad, both kappas are featured in the expression for wI. 
This is the main reason that the intermediate range behaviour has eluded 
experimental identification—because it is difficult to envisage any technical 
circumstances where its contribution could be directly isolated. However, an 
interesting interplay of distance and orientational factors does arise in connection 
with fluorescence polarisation measurements, as will be shown below.  
 
14.3.1 Distance dependence 

The three principal determinants of the transfer efficiency, as given by Eqs. 
(14.22)–(14.24), are the separation, mutual orientation, and spectral overlap of 
the donor-acceptor pair, the effect of each which will now be considered. First, 
for simplicity in beginning to consider the dependence on distance, let it be 
assumed that the donor and acceptor have isotropically averaged orientations and 
that the refractive index is taken as unity. It then follows that the distance 
dependence of the full rate expression Eq. (14.22) factorises out in the following 
form,24,35 which also identifies it with the tensor inner product of the QED 
coupling formula Eq. (14.18): 
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This excitation transfer function A(k,R) is a scalar characterising the distance 
dependence of E1-E1 coupling in RET. The graph shown in Fig. 14.6 exhibits a 
log-log plot of the function over the range of 1 nm to 1 m, for a value of k = 9  
106 m–1 (corresponding to a wavelength at the red end of the visible region). This 
figure gives a readily comprehensible representation of the Förster behaviour and 
‘radiative’ transfer as short- and long-range asymptotes, respectively, as shown 
by the change in gradient between the short- and long-range regions. 

Most applications of RET relate to the Förster regime, i.e., systems in which 
energy-transfer steps occur between chromophores separated by less than the 
Förster distance, and therefore almost certainly within the short-range regime, 

«1kR  . Systems in which the mean transfer distance falls in the long-range 
regime, »1kR  , necessarily require the optically relevant species to be present in 
low concentrations; moreover, any diffusion processes that could produce 
transient short-range donor-acceptor juxtapositions should have a timescale 
significantly longer than the donor decay time, or else diffusion-limited Förster 
transfer would result. The radiative transport that ensues in the latter case (in a 
variety of systems, such as dilute dye solutions) leads into a distinct branch of the 
theory in which multiple scattering must also be considered; a detailed account is 
given by Berberan-Santos et al.36 The possibility of experimentally verifying the 
general form of distance dependence given by Eq. (14.25), and, in particular, 
identifying the intermediate R–4 term, remains a currently unachieved but 
tantalising prospect.  
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Figure 14.6 Log-log plot of the RET excitation transfer function A(k,R), as defined by Eq. 
(14.25), against the donor-acceptor distance R (in nanometers) for k = 9  106 m–1. 

14.3.2 Orientation of the transition dipoles 

The  factors in Eq. (14.23), which depend on the mutual orientations of the 
donor and acceptor (see Fig. 14.7), represent another important facet of the 
energy transfer.37–39 Certain orientations reduce the rate of transfer to zero; for 
others, they effect an ‘enhancement’ of the energy transfer to its maximum 
possible rate. It is worth noting (since it is a fact that is not infrequently 
misreported), that energy transfer may be permissible even when the relevant 
donor and acceptor transition moments are at right angles to each other, if the 
second term in Eq. (14.24) is nonzero. In fact, the only case in which the transfer 

is necessarily forbidden, given the condition A B  , is when one of these 

transition dipoles is also orthogonal to R . In this situation, all three terms of Eq. 
(14.23) vanish.  

 
Figure 14.7 Typical noncoplanar orientations of the donor and acceptor transition dipoles, 
relative to the displacement vector. 
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Other factors can complicate the orientation dependence of RET. One is the 
fact that in any system that is to an extent fluid or disordered, the relative 
orientation of all donor-acceptor pairs may not be identical. It has already been 
noted that in the isotropic case (having completely uncorrelated orientations), the 

2
3  factor in wF averages to 2

3 ; however, when a degree of orientational 

correlation is present, other results are possible (in the overall range of 0–4), the 
exact value characterising the detailed form of the angular distribution. Secondly, 
it can happen that either the donor or the acceptor transition moment is not 
unambiguously identifiable with a particular direction within the corresponding 
chromophore frame of reference. Specifically, the electronic transition may then 
relate to a degenerate state, as can occur with square planar complexes, for 
example. Alternatively, very rapid but orientationally confined motions might 
occur. The considerable complication that each of these effects brings into the 
trigonometric analysis of RET has been extensively researched and reported by 
van der Meer.2  

It can at first sight be surprising to discover that the relative orientation of 
transition dipoles is manifest in readily discernible polarisation effects, even in 
media where the donor and acceptor orientations are uncorrelated. For example, 
when a single molecule in solution absorbs and then fluoresces, the angle  
between the absorption and emission transition moments can be deduced from a 
determination of the fluorescence anisotropy, defined as12,13: 
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where ||I  and I  respectively designate the intensities of fluorescence parallel 

and perpendicular to the polarisation of the excitation beam. It is relatively 
straightforward to show that 
 

  1cos3 2
5
1

0  r , (14.27) 

 
the subscript on the left indicating that no transfers of energy are involved. The 
value r0 = 0.4 ensues when the absorption and emission moments are parallel. In 
a two-chromophore donor-acceptor system, if the pair were to be held in a fixed 
mutual orientation but could freely tumble as a pair, the result [Eq. (14.27)] 
would still be applicable, provided that within each chromophore there were 
parallel excitation and decay transition moments; the calculated value of  would 
then signify the angle between those differently oriented directions in the donor 
and acceptor.  

If, however, the donor and acceptor are free to rotate independently, then 
the act of energy transfer significantly reduces the extent of the fluorescence 
anisotropy. It has long been known that one transfer step reduces the anisotropy 
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to a value of 025
1 r , at least for conventional Förster transfer. However, the 

complete result, which first emerged from a detailed analysis based on the 
retarded coupling tensor Eq. (14.21), is as follows:40 
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in which the overbars signify distributional averages over the k and R values for 
the transfer. A graph of the function r1/r0 is shown in Fig. 14.8. Clearly in the 
long-range asymptote corresponding to radiative transfer between the donor and 
acceptor, the anisotropy r1 takes the value 025

7 r . The result is appealing because 

it manifests so dramatically the onset of retardation effects. 
 
14.3.3 Spectral overlap 

Finally, each component in the overall RET rate Eq. (14.23) involves an integral 
over a frequency-weighted product of the donor emission and acceptor absorption 
profiles. As such, it is not only the peak frequencies or wavelengths for emission 
and absorption that dictate the energy transfer conditions; so do the spectral shapes 
and bandwidths. Such features assume particular significance in connection with 
the multistep processes that take place in energy-harvesting materials. This subject 
will be further developed in that connection, in Section 14.5.1. 
 Most theoretical work on the spectral overlap addressing the Förster regime, 
ignores the dispersion of the refractive index that is featured in wF. General 
analytical expressions for the frequency-weighted overlap have been determined 
for several cases of spectral line-shape. Principal among these is the Gaussian 
case, which fits reasonably well the line profile of many molecular absorption 
and emission processes in the condensed phase, where the high densities of 
vibrational levels in the ground and excited electronic states produce a  
 

 
 

Figure 14.8 Rise in fluorescence anisotropy as a function of the distance between 
orientationally uncorrelated donor and acceptor particles. 
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broadening that is similar in effect to a stochastic perturbation. For spectra that 
depart markedly from a completely symmetric Gaussian shape, a better fit is 
often afforded by a log-normal distribution. Typically, systems with the latter 
form of line-shape exhibit a sharper rise to the maximum on the high-frequency 
side of the absorption spectrum, and on the low-frequency side of the emission 
spectrum, together retaining the familiar ideal of a ‘reflection’ relationship 
between absorption and emission spectra.  
 
14.4 Energy Transfer in Heterogeneous Solids 

A wide variety of materials can be engineered to exhibit photoactive properties 
based on RET. In this section, three types of systems are chosen and discussed to 
illustrate this range: doped solids, quantum dots, and multichromophore 
complexes. Not surprisingly, quite different attributes and applications are 
associated with each system type.  

14.4.1 Doped solids 

In optical materials dilutely doped with transition metals, RET represents a 
diffusive mechanism that moderates other processes such as stimulated emission 
(as another example, it influences laser efficiency). RET also plays an important 
role in the photophysics of rare-earth (lanthanide)-doped crystals, glasses, and 
fibers. These optically dilute materials display spectral features in the visible and 
near-visible regions that owe their origin to f-shell electronic transitions in the 
dopant.41 The narrow linewidth of the energy levels, together with the 
coincidences of spacing between levels in different lanthanides, afford excellent 
opportunities for the design of materials that invoke not only conventional RET, 
but also higher-order effects.42 A variety of proposals by Dexter43 and 
Bloembergen44 in the 1950s built on the premise of deploying RET to relay 
excitation between lanthanide ions. Following the development of lasers, the 
predicted higher-order effects were quickly brought to experimental fruition. 
Principal among the latter processes are stepwise or cooperative up-conversion, 
sensitisation, and down-conversion.45,46 

The term up-conversion signifies processes in which low-frequency radiation 
is converted to a higher frequency, the output itself often being used as a basis for 
laser emission. In common with parametric processes involving the direct 
conversion of electromagnetic radiation in optically nonlinear crystals, the RET-
based mechanism furnishes an output in which each photon is created at the 
expense of two input photons. In contrast to parametric processes, however, the 
input photons are not required to arrive simultaneously. The consequence is that 
the effect is achievable at lower intensities. The simplest scheme is one in which 
transfers of energy from two initially excited but spatially isolated donors, A* 
and B*, promote an acceptor C to a state with approximately twice the energy of 
the first excitation. One possibility is a stepwise process in which the twin donors 
sequentially deliver excitation energy to the acceptor, as shown in Fig. 14.9. In  
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some of the literature, this is referred to as APTE (Addition de Photons par 
Transferts d’Energie).47 The mechanism can operate even when there is no 
suitable energy level to accommodate the initial transfer step. To satisfy the 
principle of energy conservation, the mechanism requires concurrent operation of 
the RET processes accommodated by the involvement of a virtual level in the 
acceptor; this latter process is often known as cooperative up-conversion. Chua 
and Tanner have shown how the theory can be extended to distance regimes 
where long-range radiative transfer is dominant.48 

The QED theory of APTE up-conversion invokes fourth-order time-
dependent perturbation theory, as befits the need to create and annihilate two 
virtual photons to effect the necessary couplings. Calculations lead to a quantum 
amplitude comprising three types of terms, each itself comprising 24 different 
contributions based on the allowed pathways through a state-sequence diagram,49 
as illustrated in Fig. 14.10. Of the three quantum amplitude components, one is 
designated cooperative to signify that each donor loses its energy directly to the 
acceptor; the other two are termed accretive, signifying that one donor passes its 
energy to the other, from which the sum energy is conveyed to the acceptor. Two 
cases arise due to the choice of the alternative roles played by each donor. The 
results are as follows:50–52 
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where  = ck, once again, k is as defined by Eq. (14.16), and each  is a 
transition moment; (–, –) is a two-photon absorption tensor, (2, –) is 
formally an electronic anti-Stokes Raman tensor, and the three mutual 
displacement vectors are defined by ,C A R R R ,C B

  R R R and 

B A
  R R R . 

 

 
 

Figure 14.9 Diagram representing cooperative up-conversion. 
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For simplicity (conforming to the usual experimental case) it is assumed that 
A and B are chemically identical. From Eq. (14.29), the quadratic dependence of 
the up-conversion rate produces a result with three ‘diagonal’ and six ‘off-
diagonal’ terms, as well as a complicated dependence on the dopant 
concentrations C of the donor and acceptor ions. For example, the third term of 
Eq. (14.29) contributes a diagonal rate term that in the short range runs as 

6 6R R   , producing a sum expressible as 2
A B CC C C  (with, for example, = 

64.39 for a regular lattice of cubic symmetry).52 
Similar principles operate in sensitisation processes.53 Here, the transfer of 

excitation from a donor ion A* to an acceptor C engages a bridging species B, 
without which the transfer is ineffective. Once again, the term ‘up-conversion’ is 
common for such observations, but ‘sensitisation’ distinguishes it from the 
pooling processes described above. The other principal case of interest, 
degenerate down-conversion or quantum cutting, is a phenomenon in which 
excitation is simultaneously conveyed to two acceptors A and B, from a single 
excited donor C*, each transfer carrying approximately half of the energy of the 
donor excitation.54 Thus, for example, an initial excitation of VUV radiation can 
lead to the emission of visible light. Systems exhibiting such effects represent the 
fulfillment of very early suggestions by Dexter of systems that can exhibit 
quantum yields greater than unity.43  

 

 
 

Figure 14.10 State-sequence diagram for cooperative up-conversion, accommodating 24 
quantum amplitude contributions. In each box, the two circles on the left denote donors 
and that on the right, an acceptor. Grey circles designate virtual states; black and white 
circles denote excited and ground states. 
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14.4.2 Quantum dots 

There is growing interest in a variety of schemes that are based on the transfer of 
excitation between adjacent quantum dots,55–64 and are now being envisaged for 
performing quantum computation. Such proposals generally aim to exploit the 
discrete, size-tunable, and intense character of quantum dot exciton transitions, as 
well as the fact that these processes can be switched very rapidly using optical 
excitation. Moreover, it proves possible to code additional information by the use 
of circularly polarised excitation, since this enables specific exciton spin states to 
be populated.65 This important question thus arises: Can the spin state of an exciton 
be transmitted or flipped through RET between suitably organised quantum dots? 
The answer is provided by a QED analysis66 that separately identifies those 
contributions to the RET quantum amplitude as corresponding to left- and right-
circular polarisations of the coupling virtual photons. The resulting plots in Fig. 
14.11 show the effect of rotating one quantum dot relative to another (assuming the 
electronic coupling to be real). When the transition moments are parallel, the 
exciton orientation is transmitted unchanged from one quantum dot to another; 
when they are antiparallel, the geometry causes the exciton spin to flip. Energy 
migration down a column of quantum dots oriented in a common direction 
therefore proceeds with a full retention of spin orientation.  

One advantage of the QED treatment of the problem is that not only the 
short-range but also the long-range behaviour is identified, even though the latter 
is of less interest from an application viewpoint. In the long-range asymptote, it 
is clear that angular momentum must be conserved about the propagation 
direction of the photon, which coincides with the mutual displacement vector of 
adjacent quantum dots and hence, the local columnar morphology. Thus, it 
transpires that the same feature operates in the technically important near-zone 
region, even though the coupling cannot in this case be ascribed to real photon 
propagation. Energy migration down a column of quantum dots with a common 
orientation preserves spin information, absolutely; the observation of spin 
flipping between alternately inverted quantum dots is another manifestation of 
the same principle. 

 

 
 

Figure 14.11 Quantum dot energy transfer. Variation of (a) spin antiparallel and (b) spin 
parallel transfer functions as a function of relative orientations. 
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14.4.3 Multichromophore complexes 

RET is an extremely significant process in the operation of photosynthetic and 
biomimetic light-harvesting materials.67–72 The photosynthetic systems of purple 
bacteria, in particular, have been extensively studied and characterised, and the 
emulation of their high efficiency is a key goal in the development of new 
polymer-based materials.  

In order to most effectively utilise the sunlight that falls on them, 
photosynthetic organisms have a system of antenna complexes surrounding the 
reaction centres where photosynthesis takes place.73,74 The complexes absorb 
sunlight and the acquired energy migrates towards the reaction centre by a series 
of short-range, radiationless energy-transfer steps (see Fig. 14.12). In the overall 
migration of energy from the site of its initial deposition to the site of its 
chemical action, a spectroscopic gradient (see Section 14.5.1) is one of the key 
directional principles obviating random diffusion. Energy is quickly and 
efficiently directed towards a reaction centre. Not only does this allow an 
organism to harvest light incident on a large surface area, but by pooling energy 
from a large number of antenna chromophores, energy of a higher equivalent 
frequency can be produced. This is essential, since the majority of the incident 
light from the sun has too low a frequency for its individual photons to drive 
photosynthesis.  

It is not only the spectroscopic properties of the chromophores that determine 
the character and direction of energy flow; the chromophore positioning and 
orientation are also important. Two-dimensional optical spectroscopy can unveil 
the intricate interplay between spectral and spatial overlap features in light-
harvesting complexes, as beautifully exhibited in a recent study on  
 

 
 

Figure 14.12 Energy flow in a bacterial photosystem for the oxidation of water. The outer 
rings of light-harvesting complex LH2 surround one inner ring of LH1 complex, near the 
middle of which is the reaction centre. 
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bacteriochlorophyll.75 Interrogating the system with a sequence of ultrashort laser 
pulses, the optical response of the sample reveals linear absorption processes and 
couplings between chromophores, as well as dynamical aspects of the energy 
transfer. The results show that excitation relocation does not proceed simply by 
stepwise transfer from one energy state to another of nearest energy; it depends 
on strong coupling between chromophores, determined by the extent of their 
spatial overlap. Thus, excitation relocation may involve fewer intermediary 
chromophores than might otherwise be expected.  

The efficiency of photosynthetic units has encouraged the design of a variety 
of synthetic light-harvesting systems.76–79 The materials that have received the 
most attention are dendrimers,80,81 macromolecules consisting of molecular units 
repeatedly branching out from a central core. Designed to act as an excitation 
trap, dendrimers are exemplified by the structure shown in Fig. 14.13. The 
outward branching leads to successive generations of structures, each with an 
increased number of peripheral antenna chromophores. In ideal cases, the 
requisite spectroscopic gradient is established through chemically similar 
chromophores in generationally different locations.82,83 The most recent work on 
dendrimers has utilised branching motifs of threefold and fourfold local 
symmetry, based on tri-substituted benzene84 and porphyrin rings,85 respectively. 
 
14.5 Directed Energy Transfer 

There are a number of different ways in which a vectorial character can be 
produced or enhanced in RET.86 In the operation of multichromophore 
complexes in particular, it is highly important to expedite the delivery of 
energy (acquired through photoabsorption) to an appropriate location, rather 
than allowing it to be subject to a long-path random walk with the attendant 
likelihood of dissipation as heat. Although the mechanisms for controlling 
energy flow are only just beginning to receive the full attention they deserve, a 
number of important principles have already been identified. 
 

 
 

Figure 14.13 Fifth-generation polyphenylether dendrimer. 
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14.5.1 Spectroscopic gradient 

In the context of energy-harvesting materials, it has been shown that any pair of 
chromophores that plays the role of donor and acceptor will often do so as part of 
a sequence in which its donor unit acquires energy, and the acceptor passes that 
energy further onward, through preceding and subsequent RET couplings. 
Commonly, the energy passes onward through a sequence of chromophores 
exhibiting progressively longer wavelengths of absorption, because they differ 
either in their molecular structure, or in their local electronic environment (the 
latter being a particularly prominent feature of photobiological systems). This 
progression through increasingly red-shifted chromophores, known as the 
spectroscopic gradient or ‘energy funnel,’ is the reason for the directed character 
of energy capture by the system. 

In general, the excitation of each successive donor populates a vibrationally 
excited level within its electronic excited state, from which a degree of 
vibrational relaxation immediately occurs. The result is a slight degradation of 
the energy with each transfer event. Small enough not to be of major concern in 
energy efficiency terms, this feature of multistep energy migration is indeed the 
factor that largely determines its directed character. This is because, at each step, 
‘forward’ transfer is favored over ‘backward’ transfer. The single parameter that 
effectively determines the extent of this favor is the ratio of spectral overlaps for 
forward and backward transfer, a parameter that exerts a significant influence on 
the overall trapping efficiency of any energy-harvesting complex. For example, 
in the case of dendrimers, the relative propensities for forward and backward 
transfer between different generation shells is a key factor in determining the 
directedness of energy flow towards the acceptor core.  

The overall spectroscopic gradient experienced on the passage of excitation 
through a multichromophore system crucially depends on the relative 
propensities for the forward and backward transfer of energy at each individual 
step, as determined by the optical and photophysical properties of the relevant 
units acting as donor and acceptor.87 To quantify such relative propensities, it is 
therefore convenient to introduce a dimensionless efficiency parameter : 
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The integrals in the numerator and denominator of Eq. (14.30) are respectively 
defined as the ‘forward’ and ‘backward’ spectral overlaps. Their role in 
determining the directionality of energy transfer at the pair-chromophore level is 
illustrated by Fig. 14.14. The peak frequencies of B, FA, FB, and A are 1, 2, 
3, and 4, respectively, and each fluorescence peak is duly red shifted with 
respect to its absorption counterpart. In the forward transfer process, the 
excitation of A is followed by intramolecular vibrational redistribution (IVR) that 
dissipates part of the acquired energy. Following energy transfer, the same 
feature is observed in B. On comparing this process with the inverse transfer, B to 
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A, it is clear that the forward case is favored because 4 3   exceeds 2 1   

(2 >  1 in Fig. 14.14); in general, it follows that the larger the value of 2, and 
the smaller the value of 1, the higher the relative efficiency. Two parameters 
expediently quantify the extent of the spectroscopic gradient: the absorption shift 
(the frequency displacement of the acceptor absorption maximum relative to that 
of the donor band), G 4 1     and the corresponding fluorescence shift, 

G 2 3
     . 

The general expression in Eq.(14.30) has been analysed in detail for a variety 
of complex spectral line-shapes, and the results are reported elsewhere.87 Even 
the simplest case has interpretive value: when the relevant spectral functions are 
considered to be Gaussians of similar width (FWHM ) and height, the result 
for  is expressible as follows; 

 

 
2 2

G S2 1 22 ( ) kke e      , (14.31) 
 

where   1
4 ln 2k  

   and in the expression on the right, written in terms of the 

Stokes shift, S 4 2 1 3 2 1            , the approximation is based on 

making G  and G  equal. Notably, the ensuing result shows precisely the same 

functional dependence on the spectroscopic gradient and the state shift; the 
conclusion is that both properties are equally important in determining the 
directedness of the energy transfer.  
 

 
Figure 14.14 Energetics and spectral overlap features for forward and backward energy 
transfer between donor A and acceptor B. 



Resonance Energy Transfer: Theoretical Foundations and Developing Applications 489 
 

14.5.2 Influence of a static electric field 

The process of energy transfer can be significantly modified by interaction with a 
static electric field.88 At a simple level, the influence can be understood as a 
consequence of effecting shifts in the electron distributions of the interacting 
chromophores, producing modified transition moments. In more detail, new 
contributions to the RET quantum amplitude [Eq. (14.15)] arise, featuring 
additional interactions with the static field. The most significant corrections 
entail linear coupling of the field with A or B, while higher-order correction 
involves field coupling with both chromophores. Significantly, when the static 
field engages with either the donor or the acceptor transition, different selection 
rules are invoked: those formally associated with a two-quantum transition. For 
example, if both the donor and acceptor transitions are electric-dipole-forbidden, 
only the higher-order interaction can mediate the energy transfer (except, 
conceivably, by involving a much weaker, higher-order multipole). The physical 
significance is that, in such a system, energy may not transfer without the 
presence of the static field; in a suitably designed system, the field-induced 
mechanism therefore allows electrically switchable control over the delivery of 
energy to the acceptor.86  
 
14.5.3 Optically controlled energy transfer 

The current pace of development in nanofabrication techniques has promoted an 
increasing interest in the specific effects of donor and acceptor placement in 
nanoscale geometries and periodic structures. However, the possibility of 
influencing the operation of RET by an optical field, through the input of an off-
resonant auxiliary beam of laser radiation, has only very recently begun to 
receive consideration.  

Attention was first focused on amplification effects that might be observed in 
systems where energy transfer can occur without an auxiliary beam. It was shown 
that, at the levels of intensity currently available from mode-locked solid state 
lasers, significant enhancements of the transfer rate could be expected.89 Although 
the initial work anticipated effects that could be manifest in any donor-acceptor 
system, interest has subsequently refocused on structures tailored to exploit the 
laser-assisted phenomenon. Specifically, consideration has turned to systems in 
which each donor-acceptor pair has optical properties that satisfy the spectral 
overlap condition, but for which RET is designedly precluded by a customised 
geometric configuration.90 For example, as was observed in Section 14.3.2, both 
short- and long-range RET is forbidden when the donor and acceptor undergo 
electric dipole transitions whose transition moments are perpendicular both to each 
other, and to the donor-acceptor displacement vector. Through an optically 
nonlinear mechanism of optically controlled resonance energy transfer (OCRET), 
it transpires that the throughput of nonresonant laser pulses can facilitate energy 
transfer under such conditions where it would otherwise be rigorously forbidden; 
the system thus functions as an optical transistor, with excitation throughput 
switched on by the auxiliary beam. The laser systems most capable of delivering 
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the necessary levels of irradiance prove to be precisely those that will also offer 
directly controllable ultrafast speeds of switching.  

The mechanism for OCRET invokes fourth-order time-dependent 
perturbation theory. Each interaction is linear in the electric dipole interaction 
operator and thus, involves the absorption or emission of a photon. Specifically, 
in addition to the two virtual photon events (creation and annihilation) of normal 
RET, this process involves the absorption and the stimulated re-emission of a 
photon from the throughput off-resonant laser light. In common with the virtual 
photon interactions, each of the real photon events may occur at either the donor 
or the acceptor. In general, all four of the resulting possible combinations 
contribute to the overall quantum amplitude; moreover, each has 24 different 
time orderings associated with it. Figure 14.15 illustrates two of the 96 Feynman 
diagrams that arise. Again, the state-sequence method49,91 represents a 
considerably more tractable basis for the QED calculations that are necessary to 
deliver an equation for the energy transfer rate. 

Recently, detailed calculations have been performed on a prototype 
implementation of OCRET in planar nano-arrays (Fig. 14.16). The results, 
illustrated in Fig. 14.17, give encouragement that the mechanism affords a 
realistic basis for fabricating a configuration of optical switches with parallel 
processing capability, operating without significant cross-talk. The analysis also 
supports a view that a nano-array OCRET system may, in the longer term, come 
to represent a new and significant channel of progress towards reliable systems 
for use in optical computing and communications routing.92 

 

 
 

Figure 14.15 Two of the 96 Feynman time-ordered diagrams for OCRET. 
 

 
 

Figure 14.16 Two views of the nano-array structure: (a) from above and (b) from between 
the layers with their separation exaggerated for clarity. Black arrows represent donor 
transition dipoles of the upper array and grey the acceptor transition dipoles of the lower 
array; open arrows represent the excited donor and its corresponding ground-state acceptor.  
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Figure 14.17 Contour graphs depicting, on a logarithmic scale, the probability of energy 
transfer to the array of acceptors (a) in the absence and (b) in the presence of laser light. 
The efficiency of energy transfer is represented by the vertical scale and the dots indicate 
the spatial locations of each acceptor.  

 
14.6 Developing Applications 

The mechanism of RET is involved in an ever-broadening range of applications, 
only some of which have been covered in this chapter. As mentioned earlier, the 
practice of measuring the fluorescence from chromophores excited through 
energy transfer (FRET) is one of the major techniques, and in this relatively 
mature field, many recent advances such as FRET imaging microscopy93,94 reflect 
an exploitation of technical developments. Burgeoning applications are to be 
found in the biophotonics area, in particular.95–97 Staying with molecular systems, 
the ongoing development of OLED emitters is also worth flagging as a prominent 
area of current activity. However, in connection with synthetic solid state 
systems where some of the more recently envisaged applications are being 
developed, one can see tangible signs of the emergence of another new research 
forefront. 

One issue that would appear to merit much more consideration is the extent 
to which RET can be tailored, or even suppressed, in optical microcavity 
configurations. It is already well known that spontaneous emission is 
significantly influenced by inclusion of the donor in a cavity, through the 
restrictions that are thereby imposed on the sustainable optical modes. Barnes 
and others98–100 have drawn attention to the operation of similar principles in 
connection with donor-acceptor systems. In an impressive series of works by 
Lovett et al.62,63 (see also the references therein), several applications relating to 
quantum dot energy transfer processes have been considered, focusing in 
particular on the interplay of quantum state entanglement and Förster coupling. It 
has been suggested that these and other principles concerning the effect of static 
electric fields on coupled quantum dots may have an important role to play in 
quantum logic applications. Andrews has recently proposed a system in which 
the simultaneous delivery of laser pulses, with two differing off-resonant 
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frequencies, might achieve a similar purpose,101,102 while other studies currently 
underway are beginning to explore novel nanomechanical effects produced by 
the action of RET.103  

 
14.7 Conclusion 

Resonance energy transfer is a subject that has come of age. Having been studied 
already for more than half a century, it has many established applications, despite 
the fact that some of the fundamental principles have only quite recently become 
fully understood. Quantum electrodynamics has played an important part in 
consolidating the theory, and has paved the way for a number of newer 
developments in which photonic and quantum optical aspects of light-matter 
coupling come into play. With such an extensive involvement in widely varying 
media, this is a subject that deserves to be more widely taught and understood; 
this chapter is offered as a contribution towards that objective. 
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