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2.2.6 Newtonian Imaging Equation

In the Gaussian imaging equation (2-4), the object and image distances S and ¢S ,

respectively, are measured from the vertex V of the refracting surface. In the Newtonian

imaging equation, they are measured from the respective focal points F and ¢F . Thus, let

z and ¢z  be the object and image distances from the focal points F and ¢F ,  respectively,

as indicated in Figure 2-14. From similar triangles P FP0  and FVA in this figure, we note

that the transverse magnification may be written

M h h f zt ∫ ¢ = - , (2-22)

where z (like f ) is numerically negative because P0 lies to the left of the reference point

F. Similarly, from similar triangles VF B¢  and ¢ ¢ ¢F P P0 ,  it may also be written

M z ft = - ¢ ¢ . (2-23)

Equating the right-hand sides of these equations, we obtain the Newtonian imaging

equation:

zz f f n n f¢ = ¢ = - ¢( ) ¢2 . (2-24)

It is evident from Eq. (2-24) that z and ¢z  must have opposite signs, implying that an

object and its image lie on the opposite sides of the corresponding focal points. For

example, if the object lies to the left of F , then the image lies to the right of ¢F .

Differentiating both sides of Eq. (2-24) and using Eqs. (2-8), (2-22), and (2-23), we

obtain Eq. (2-18), relating the longitudinal and transverse magnifications.

2.3 THIN LENS

It should be evident that the image formed by a lens consisting of two refracting

surfaces can be obtained by a repeated application of the imaging equation for a

refracting surface. The image formed by the first surface becomes the object for the

second, and its image by the second surface yields the image formed by the lens. In this

section, we consider imaging by a thin lens in air, i.e., one for which the spacing between

its two surfaces is negligible. We derive simple imaging equations for a thin lens such

that it is not necessary to apply the imaging equations for each surface to determine the

image of an object. Thus, we show that it is possible to determine the image of an object

without determining the image formed by its two surfaces sequentially. The imaging

equations when the media on the two sides of a thin lens are different, are also given.

Finally, it is shown that the power a system consisting of thin lenses in contact is equal to

the sum of the powers of the individual lenses.

2.3.1 Gaussian Imaging Equation

Consider a thin lens in air made of a material of refractive index n, as illustrated in

Figure 2-16. Let the radii of curvature of its two surfaces be R1  and R2 , with their

centers of curvature at C1  and C2 , respectively. The line joining C1  and C2  defines the

2.3 Thin Lens
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Figure 2-16. Imaging  of an axial point object P0  by a thin lens of refractive index n.
The lens surfaces have radii of curvature of R1  and R2 . The line OA connecting
their centers of curvature C1  and C2  defines the optical axis of the lens. C is the
center of the lens. ¢P0  is the image of P0  formed by the first surface, and ¢¢P0  is the
image of the virtual object ¢P0  formed by the second surface.

optical axis OA of the lens. Consider an axial  point object P0  lying at a distance S1 from

the lens. Its image ¢P0  formed by the first surface lies at a distance ¢S1  that, according to

Eq. (2-4), is given by

n

S S

n

R¢
- = -

1 1 1

1 1
. (2-25)

A ray from P0 is refracted by the surface intersecting the optical axis at ¢P0 . This image is

a virtual object for the second surface because the rays associated with it appear to

converge to it rather than actually diverge from it. It lies at a distance S S2 1= ¢ . Its image

¢¢P0  formed by the surface lies at a distance ¢S2, that, according to Eq. (2-4), is given by

1 1

2 1 2¢
-

¢
= -

S

n

S

n

R
. (2-26)

Adding Eqs. (2-24) and (2-25), we obtain

1 1
1

1 1

1 2¢
- = - -

Ê
ËÁ

ˆ
¯̃S S

n
R R

( ) , (2-27)

where we have let S S1 =  and ¢ = ¢S S2  be the object and final image distances, as

indicated in Figure 2-16. Equation (2-27) is the Gaussian imaging equation relating the

object and image distances.

2.3.2 Focal Lengths and Refracting Power

By definition, image-space focal length ¢f  represents the image distance when the

object lies at infinity, i.e., ¢ = ¢S f  when S = - •  . Therefore, from Eq. (2-27), ¢f  i s

given by
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. (2-28)

Thus, a ray incident on the lens parallel to its optical axis is refracted by the first surface

intersecting the optical axis at ¢F1  at a distance nR n1 1-( ) , as illustrated in Figure 2-16.

This ray is refracted by the second surface intersecting the optical axis at ¢F , which is the

image-space focal point. In effect, the parallel ray incident on the lens is refracted by it

passing through ¢F , as illustrated in Figure 2-17a. Similarly, by definition of the object-

space focal length, f represents the object distance that yields an image at infinity. Thus,

¢ = •S  when S f= , where f f= - ¢ . A ray from the object-space focal point F incident

on the lens emerges from it parallel to its optical axis upon refraction, as illustrated in

Figure 2-17b. It should be evident that the focal points F  and ¢F , which lie on the

opposite sides of the lens, are not conjugates of each other. The imaging equation (2-27)

can be written in terms of the focal length ¢f  as

1 1 1

¢
- =

¢S S f
. (2-29)

The right-hand side of Eq. (2-27) represents the refracting power K of the lens. Its

reciprocal is called the equivalent or effective focal length fe  of the lens. Thus, we may

write

K
f fe

= =
¢

1 1
(2-30)

= -( ) -
Ê
ËÁ

ˆ
¯̃

n
R R

1
1 1

1 2
(2-31a)

= -( ) -( )n C C1 1 2 , (2-31b)
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Figure 2-17. Focal points of a positive thin lens with its center C. (a) Image-space
focal point ¢F . (b) Object-space focal point F. Both focal points are real in that
parallel rays converge to ¢F , and rays actually originating from F form a parallel
beam after refraction by the lens.

2.3 Thin Lens
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where C R= 1  is the curvature of a surface. We note that the refracting power of the lens

is equal to the sum of the refracting powers K1  and K2  of its two surfaces, i.e.,

K K K= +1 2 , (2-32)

where

K
n

R1
1

1= -
(2-33a)

and

K
n

R2
2

1= -
. (2-33b)

We note that the focal length or the power of a lens depends on the difference in the

curvatures of its surfaces but not on the curvatures themselves. Thus, if the curvatures of

the lens surfaces are changed by the same amount, its shape changes without changing its

Gaussian properties. This degree of freedom, called the bending of the lens, is used in

reducing its aberrations. The equation (2-31) for the focal length of a thin lens, in terms of

its refractive index and the curvatures of its surfaces, has traditionally been called the lens

maker’s formula. This is, however, not correct because a lens of zero thickness cannot be

fabricated. This name should instead be associated with Eq. (4-41) for a thick lens

(described in Chapter 4).

A lens with a positive value of K , fe , or ¢f , as illustrated in Figure 2-17, is called a

converging or a positive lens. A lens with the curvatures of its two surfaces having the

same magnitude but opposite signs is referred to as an equiconvex lens. The surfaces

refract a ray incident on the lens toward the optical axis. Similarly, a lens with a negative

value of K, fe , or ¢f  is called a diverging or a negative lens.. It is shown in Figure 2-18,

illustrating its focal points. Parallel rays incident on the lens, as in Figure 2-18a, are

refracted by it, appearing to diverge from the image-space focal point ¢F . Similarly, rays

converging to the virtual object-space focal point F  are refracted by the lens into a

parallel beam, as illustrated in Figure 2-18b. A lens whose first surface has a negative

curvature and second surface has a positive curvature of the same magnitude as the first is

referred to as an equiconcave lens.

A lens with surface curvatures of the same sign is called a meniscus lens. It can be

positive or negative, as illustrated in Figure 2-19. Unless it is surrounded by a medium of

higher refractive index, a lens that is thick at the center compared to its edges is positive,

and a lens that is thin at the center is negative. Of course, one of the surfaces may be

planar, in which case the lens is called planoconvex or planoconcave, depending on the

curvature of the other surface.

It should be noted, however, that if a beam converging to ¢F  is incident on a positive

lens, as in Figure 2-20a, i.e., a virtual point object P0 at ¢F , a real image is formed at ¢P0 .
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Figure 2-18. Focal points of a negative thin lens. (a) Image-space focal point ¢F . (b)
Object-space focal point F. Both focal points are virtual in that parallel rays appear
to diverge from ¢F , or rays appearing to converge to F form a parallel beam after
refraction by the lens.

(a) (b)

Figure 2-19. (a) Positive and (b) negative meniscus lens. The radii of curvature of
their surfaces have the same sign. The lens thickness at the center is higher
compared to that at the edges for a positive meniscus, and lower for a negative
meniscus.
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Figure 2-20. Virtual point object P0  at the real focus ¢F  of a positive lens. The
image point ¢P0  is real. (b) Real point object P0  at the virtual focus F of a negative
lens. The image point ¢P0  is virtual.

2.3 Thin Lens
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Similarly, if a point object is placed at the focal point ¢F  of a negative lens, as in Figure

2-20b, i.e., a real point object P0 at ¢F , a virtual image is formed at ¢P0 . The image

distance in both cases is given by half the corresponding focal length.

2.3.3 Magnifications and Lagrange Invariant

The transverse magnification of the image formed by the lens can be obtained by

applying Eq. (2-12) to the images formed by its two surfaces. A ray from an off-axis

point object P passing through the center of curvature C1  of the first surface is shown in

Figure 2-21 intersecting the image plane at its image ¢P . The magnification of the

inverted image ¢ ¢P P0  of the object P P0  formed by the first surface is given by

M h h1 1 1∫ ¢ / (2-34a)

= ¢S

nS
1

1

. (2-34b)

A parallel ray from P is refracted by the first surface passing through its focal point ¢F1 ,

which, in turn, is refracted by the second surface passing through the focal point ¢F  of

the lens and intersecting the final image plane at the image point ¢¢P . The magnification

of the erect image ¢¢ ¢¢P P0  of the object ¢ ¢P P0  formed by the second surface is given by

M h h h h2 2 2 2 1∫ ¢ = ¢ ¢/ / (2-35a)

= ¢
¢

n S

S
l 2

1

. (2-35b)

Therefore, the transverse magnification of the final image ¢¢ ¢¢P P0  of the object P P0

formed by the lens as a whole is given by

M M M h h S St = = ¢ = ¢1 2 2 1 2 1 , 
(2-36)

or

M h h S St ∫ ¢ = ¢ , (2-37a)

Figure 2-21. Imaging of an off-axis point object P. The dotted line simply shows that
the final image ¢¢P  lies on the line joining ¢P  and C2 , as expected.
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where we have let h h= 1 and ¢ = ¢h h2  be the object and final image heights, respectively.

Substituting for ¢S  from Eq. (2-29) into Eq. (2-37a), the magnification can also be

written in terms of S and ¢f :

M
f

f St = ¢
¢ +

. (2-37b)

The angular magnification of a ray bundle diverging from the axial point object P0

and converging toward its image ¢P0  (see Figure 2-22) is given by

  
M S S� � �= ¢ = ¢0 0 . (2-38)

From Eqs. (2-37) and (2-38), we find that the product of the transverse magnification of

the image and the angular magnification of the ray bundle for a thin lens is given by

M Mt � = 1 . (2-39)

From the definitions of the magnifications, Eq. (2-39) can also be written

¢ ¢ =h h� �0 0 , (2-40)

showing that the quantity h�0 is invariant upon refraction by the lens. This quantity is

called the Lagrange invariant. [It is shown in Section 5.4.10 that the object flux entering

the lens is proportional to its square.] From Eq. (2-40), the transverse magnification of the

image can also be written

  Mt = ¢� �0 0 , (2-41)

i.e., it is given by the ratio of the slope angles of the incident and refracted rays for an

axial point object.

Differentiating both sides of Eq. (2-27), we obtain the longitudinal magnification of

the image:

M S S S S M M Ml t t∫ ¢ = ¢( ) = =D D 2 2
b . (2-42)

Figure 2-22. Lagrange invariant  h�0  for imaging  by a thin lens.
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The comments made following Eq. (2-18) apply to Eq. (2-42) as well. Thus, for example,

when the object is displaced longitudinally, the image is displaced in the same direction

as the object. In Eq. (2-42), the lens is assumed to be fixed in position, and D ¢S

represents the displacement of the image corresponding to a displacement DS  of the

object. However, if the object is fixed and the lens is displaced by an amount D , then the

corresponding displacement of the image is 1 2-( )Mt D , as shown in Section 2.9.3.

2.3.4 Graphical Imaging

The Gaussian image of a point object can be located graphically, as illustrated in

Figure 2-23, in the same manner as in Section 2.2.5 for the case of a refracting surface,

except that a ray through the center of curvature of the surface is replaced by one through

the center of the lens. Thus, a ray from an object point P incident parallel to the optical

axis of the lens emerges from it passing through its image-space focal point ¢F , and a ray

incident in the direction of its object-space focal point F emerges parallel to the optical

axis. The intersection of these two rays locates the image point ¢P . The ray passing

through F determines the image height ¢h . The transverse magnification given by Eq. (2-

37) dictates similarity of the triangles P CP0  and ¢ ¢P CP0 , showing that a ray incident in

the direction of the center C of the lens passes through it undeviated. Figure 2-23 is

similar to Figure 2-16 except that the two-step imaging (one for each surface) has been

replaced by single-step imaging. Only two of the three rays from an off-axis point object,

namely, parallel to the axis, in the direction of the object-space focal point, and in the

direction of the center, are needed to determine the image point. Of course, the third ray

provides a good check on the correctness of the drawing.

2.3.5 Newtonian Imaging Equation

In the Gaussian imaging equation (2-27), the object and image distances S and ¢S ,

respectively, are measured from the lens center.  In the corresponding Newtonian imaging

equation, they are measured from the respective focal points. Thus, as indicated in Figure

2-23, let z and ¢z  be the object and image distances from the focal points F and ¢F ,

respectively. From similar triangles P FP0  and FCA, we note that the transverse

magnification of the image can be written

M h h f zt ∫ ¢ = - . (2-43)

Similarly, from similar triangles CF B¢  and ¢ ¢ ¢P F P0 , it may also be written

M z ft = - ¢ ¢ . (2-44)

The negative sign on the right-hand sides of Eqs. (2-43) and (2-44) has been introduced

because Mt  in Figure 2-23 is numerically negative due to ¢h  being numerically negative.

From Eqs. (2-47) and (2-44), we obtain

z z f f f¢ = ¢ = - ¢2 , (2-45)




