84 Chapter 3

3.2 Interferogram Processing Using Frequency Techniques
3.2.1 Demodulating simulated fringes due to a tilt

This section simulates a typical interference pattern and deciphers it using the
frequency technique. Consider the following test interferogram consisting of
parallel interference fringes with an inclination angle of 6, whose intensity is
given by

I(x,y) = a+ b sin[ky(x cos 6 + y sin 0)], (3.1)

where « and b are constants. These fringes represent a carrier frequency or an
impulse in the frequency domain. In an optical interferometer, the fringes
represent a tilt between the reference and the object beam.

The MATLAB script “my_tilt.m,” listed in Table 3.1, deciphers the
fringes and produces a tilt. Figures 3.1(a) and 3.1(b) show the fringes and
the deciphered fringe pattern. In this example, the information is the tilt, so
the algorithm works by cropping only where the carrier is and performing an
inverse Fourier transform. The general case in which the carrier must be
eliminated is discussed in Section 3.2.2.

3.2.2 Demodulating fringes embedded with a carrier

The measured interferometric intensity distribution 7(x,y) can be
written as

I(x,y) = a(x,y) + b(x,y) cos[(ky,x + ky y) + b(x, y)], (3.2)

where k, , are the carrier spatial frequencies, a(x,y) is the background
variation, and b(x, y) is related to the local contrast of the pattern. In other
words, a(x,y) carries the additive and b(x,y) carries the multiplicative
disturbances, respectively, and ¢(x,y) is the interference phase to be
computed from I(x, y). Equation (3.2) can be written as '

I(x,y) = a(x,y) + be(x,y) explj(k,,x + k, y)]
+bf(xvy) exp[—](kmx—kkyoy)], (33)

where b.(x,y) = (b(x,y)/2) exp[jd(x, y)]. The Fourier transform of Eq. (3.3)
produces

Ik ky) = alko k) + bo(ky — koo ky — ky) + Dk, + koo ky + Ky (3.4)
where ~ indicates the function in the Fourier domain. Assuming that the

background intensity a(x, y) is slowly varying compared to the fringe spacing,
the amplitude spectrum (ky,ky) will be a trimodal function with a(k,, k)
broadening the zero peak and b,, b} placed symmetrically with respect to the

Fringe Deciphering Techniques Applied to Analog Holographic Interferometry 85

Table 3.1 MATLAB code “my_tilt.m” creates a fringe pattern [see Figs. 3.1(a) and (b)].

1 %$%This section starts with a computer-generated fringe
2 %and

3 $tries to decipher the unwrapped phase

4 clc

5 close all

6 clear all

7 lambda=0.632; %$In microns
8 = —mm— === == Create Test Image—- - - - - —-—-—-—-——- - - - —
9 pts=2"8;

10 x=linspace (0,pts/8-1,pts);

11 y=x;

12 [X0,Y0] =meshgrid(x,vy):

13 theta=45*pi/180;

14 £f0=1;

15 I =128+127*. ..

16 sin(2*pi* (X0* £0* cos (theta)+Y0* £0* sin (theta)));
17 figure

18 imagesc(I)

19 colormap(gray(256))

20 colorbar

21 title(‘Simulated fringe pattern’)

22 %Crop tomake it square

23 [rows,cols] =size(I);

24 if cols>rows

25 rect_crop=[floor (cols/2)-floor (rows/2) 1 rows—-1 rows] ;
26 elseif cols<rows

27 rect crop=[1 floor (rows/2)-floor (cols/2) cols cols-1] ;
28 else

29 rect crop=[1l 1 cols rows] ;

30 end

31 I=imcrop (I, rect crop);

32 im(I)

33 axis xy

34 max(I(:))

35 min(I(:))

36 %Go to Fourier domain to select the region of interest
37 I1F=(fft2(£ftshift(I)));

38 IL1F s=fftshift (I1F);

39 abs I=abs(IlF_s)."2;

40 I1F c=zeros(pts,pts);

41 %%

42 mesh (abs T)

43 form=1:1:1

44 im(abs I)

45 axis xy

46 [Ro,Co] =size (I1F);

47 line([ceil(Co/2)+1 ceil (Co/2)+1] ,[0 ceil(Ro)])

48 1line ([0 ceil (Co)] ,[ceil (Ro/2)+1 ceil (Ro/2)+1])

49 rectl=[151-5151-510 10];

50 [I1l,rect]=imcrop(abs I, rectl);

51 TI1F c(round(rect(2)):round(rect(2)+rect(4)),...
52 round(rect(l)) :round(rect (1l)+rect(3)))=. ..

53 I1F s(round(rect(2)):round(rect(2)+rect(4)),...
54 round(rect(l)) :round(rect(l)+rect(3)));

55 end

(continued)

86

Chapter 3

Table 3.1 (Continued)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

abs I c=abs (I1lF c)."2;

im(abs I c)

[Ro,Co] =size(abs I c);

line ([ceil (Co/2)+1 ceil (Co/2)+1] ,[0 ceil (RO)])

line ([0 ceil (Co)] ,[ceil (Ro/2)+1 ceil (Ro/2)+1])

axis xy

%Calculate the wrapped phase

I2=fftshift (ifft2 (fftshift(I1F c)));

[ro,co] =size(I2);

I3=1I2(:);

ind=find(real (I3)>0);

I3 phase=zeros(l,length(I3))’ ;

I3 phase (ind)=atan (imag (I3 (ind)) . /real (I3(ind)));
ind=find(real (I3)<=0);

I3 phase (ind)=atan (imag (I3 (ind))./. ..

real (I3(ind)))+pi*sign(imag(I3(ind)));

I2 phase=reshape (I3 phase, ro,co);

%12 phase=atan2 (imag(I2),real(I2));

close all

figure

imshow (I2_phase)

max (I2_phase(:))

min(I2 phase(:))

%%- - -Unwrapping using the 2D _SRNCP algorithm:
http://www.ljmu.ac.uk/GERI/90225.htm

Call the 2D phase unwrapper from C language.

To compile the C code: in MATLAB command window, type
Miguel 2D unwrapper.cpp. The file has to be in the same

o® o o oo oo

©

Sdirectory

%as the script to work.

WrappedPhase=I2 phase;

mex Miguel 2D unwrapper.cpp

%$The wrapped phase should have the single (float in C)
%data type

WrappedPhase = single (WrappedPhase) ;

UnwrappedPhase = Miguel 2D unwrapper (WrappedPhase) ;
UnwrappedPhase=double (UnwrappedPhase) ;

h = fspecial (‘average’ ,15);

etal = imfilter (UnwrappedPhase, h);

etal=etal (10:end-10,10:end-10) ;

figure;

surfl (etal/ (4*pi)* lambda) ; shading interp;

colormap (gray) ;

100 title(‘Unwrapped 3D Depth Map’) ;

101

zlabel (‘Depth in microns’)

origin. The next step is to eliminate the zero-frequency term and one of the

sidebands b,, b:. The new spectrum is no longer symmetric, and the space-
domain function is no longer real but complex. Therefore, Eq. (3.4) becomes

jl(kxaky) = l;c(kx - kxos ky —k

o) (3.5)

Fringe Deciphering Techniques Applied to Analog Holographic Interferometry 87

Unwrapped 3D Depth Map

Depth in microns

(a) (b)

Figure 3.1 (a) Parallel interference fringes with an angle 6 and (b) deciphered fringes
showing relative tilt between two beams.

alk, .k,)
1 A T 1
09}
osf E osf bc (kx-‘kg)
bk, &, &k, kN Bk, -k .k J,) o}
08f Filter k 08
0.5F
04fF 04f
03f
0.2f 02f
01F
?15 _1.0 5 @ 5 1‘o 15 -15 ‘1Io -t.i b 5 1'0 15
k k
Ly Ly

Figure 3.2 Schematic of the process.

which is the new filtered spectrum centered around the zero frequency. Then
the inverse Fourier transform is performed on Eq. (3.5) to get

1'(x,3) = be(x.3) = 353 ») explib(x,)] (.6

The following operation is performed to find the wrapped phase:

im (e}

Refb. (x,)] G-

b(x,y) = arctan{

Figure 3.2 illustrates the process. A second example, the MATLAB script
“freq_decipher.m,” which uses the frequency deciphering technique, is shown
in Table 3.2. Figure 3.3(a) shows the initial fringe pattern, Fig. 3.3(b) shows

88

Chapter 3

Table 3.2 MATLAB code “freq_decipher.m” uses the frequency technique to decipher the
fringe pattern (see Fig. 3.3).

W J oy U W N

G O O O s D DD D DD DWW W W WwWwwwwwwNhDNhDNDNNDNDMNDMNMDMNMNMNMNERERRRRRRRFRRFRRFR O
W NP O Wow-Jo) U s WNhEFE OWwOow-Jo U WNhE O WOow-Jo) Ulhd WNhEFE O WOo-Jo Ul wdh = O

54

%$%This program takes an image that has fringes riding
%on a carrier and tries to get rid of the carrier and
Sunwrap the phase

close all

clear all

clc

lambda=0.632; $In microns
I=double (imread (‘Campsp3.tif’));

I=I(:,:,1);

im(I)

axis xy

I =padarray(I,[5050],0," both’");

im(I)

axis xy

[rows,cols] =size(I);

if cols>rows

rect crop=[floor (cols/2)-floor (rows/2) 1 rows-1 rows] ;
elseif cols<rows

rect_crop=[1 floor (rows/2)-floor (cols/2) cols cols-1] ;
else

rect crop=[1 1 cols rows] ;

end

I=imcrop (I, rect crop);

im(I)

axis xy

max (I(:))

min(I(:))

%Go to Fourier domain to select the region of interest
I1F=(fft2 (fftshift(I1)));

I1F s=fftshift (I1F);

abs_I=abs (I1F_s)."2;

[ro,co] =size (I);

im(abs_I)

clc

disp (‘Drag the circle and center it around the carrier’)
disp(‘which is a white circle centered at 250, 350")
disp (‘then double click the left button of the mouse’)
[Ro,Co] =size (I1F);

line ((round(Co/2) round(Co/2)] ,[0 round (Ro)])

line ([0 round (Co)] ,[round (Ro/2) round (Ro/2)])
h=1imellipse(gca,[10,10,50,50]);

vertices = wait (h);

X=vertices(:,1);

Y=vertices (:,2);

I1F _s_selection=I1F_s(floor (min(Y)):. ..

floor (max (Y)), floor (min (X)) :floor (max (X))) ;

im(abs (I1F_s selection).”2)

$Use the Hamming window

if mod(size(I1F_s_selection,1),2)==0
I1F s _selection=IlF s selection(l:end-1,1:end-1);
end

[A, XI, YI] =myhamming2D(size (I1F s selection, 1))
I1F c=A.*I1F s selection;

(continued)

Fringe Deciphering Techniques Applied to Analog Holographic Interferometry 89

Table 3.2 (Continued)

55 im(abs(I1lF c)."2)

56 % I1F c=I1F s selection;

57 % calculate the wrapped phase

58 I2=fftshift (ifft2 (fftshift (I1F c)));

59 im(abs(I2))

60 [ro,co] =size(I2);

61 I3=I2(:);

62 ind=find(real (I3)>0);

63 I3 phase=zeros(l,length(I3))’;

64 I3 phase(ind)=atan(imag(I3(ind))./real(I3(ind)));
65 ind=find(real (I3)<=0);

66 I3 phase(ind)=atan(imag(I3(ind))./real(I3(ind)))+ ...
67 pi*sign(imag (I3 (ind)));

68 1I2 phase=reshape (I3 _phase,ro,co);

69 %Calculate the unwrpped phase on a certain line
70 figure

71 imshow (I2_ phase)

72 max(I2 phase(:))

73 min(I2 phase(:))

74 SUncomment if you like to select to unwrap along
75 %a certain line.

76 Sh=improfile;

77 %figure

78 S%subplot(2,1,1)

79 Splot (h)

80 S%unwraph=unwrap (h) ;

81 Ssubplot(2,1,2)

82 S%plot (unwraph)

83 S%clear abs* hv* I I1* I2 I3* AC* R* X* Y* ans c* r*
84 Si* u*

85 %%%- - -Unwrapping using the 2D SRNCP algorithm:

86 %http://www.ljmu.ac.uk/GERI/90225.htm

87 %Call the 2D phase unwrapper from C language.

88 %To compile the C code: in MATLAB command window, type
89 %Miguel 2D unwrapper.cpp. The file has to be in the same

©

90 Sdirectory as the script to work.

91 clc

92 disp(‘Choose a rectangular area’)

93 disp(‘using the mouse to unwrap’)

94 figure

95 imshow (I2 phase)

96 I2 phase=imcrop;

97 WrappedPhase=I2 phase;

98 mex Miguel 2D unwrapper.cpp

99 %The wrapped phase should have the single (float in C)
100 %data type

101 WrappedPhase = single (WrappedPhase) ;

102 UnwrappedPhase = Miguel 2D unwrapper (WrappedPhase) ;
103 UnwrappedPhase=double (UnwrappedPhase) ;
104 h = fspecial (‘average’ ,15);

105 etal = imfilter (UnwrappedPhase, h) ;

106 figure;

107 surfl(etal/ (4*pi)*lambda) ; shading interp;
108 colormap (gray) ;

109 title (‘Unwrapped 3D Depth Map’) ;

110 zlabel (‘Depth in microns’)

90 Chapter 3

i \\\\'\
|

Unwrapped 3D Dey

Depth in microns

|

50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
00

Figure 3.3 (a) The initial fringe pattern, (b) the frequency domain where the region of
interest is inside the circle, and (c) the deciphered phase.

the frequency domain where the region of interest is inside a circle, and
Fig. 3.3(c) shows the deciphered phase.

3.3 Interferogram Processing Using Fringe Orientation and
Fringe Direction

Fringe orientation is often used for fringe processing.** Knowledge of the
fringe orientation is useful in applications such as

(a) contoured window filtering,>’

(b) filtering noise from electronic speckle pattern interferometry (ESPI)
fringes,

(c) the contoured correlation method used to generate noise-free fringe
patterns for ESPL%!°

(d) corner detection and directional filtering, and

(e) phase demodulation based on fringe orientation, where the phase
information can be deciphered by computing the fringe orientation using
the spiral-phase transform, as shown in Section 3.4.'3 13

11,12

Orientation is related to the local features pertaining to spatial
information of an interferogram. Structured and well-patterned features
have a specific, well-defined orientation, while noisy regions, without any
discernable structure, have no specific orientation.'® Consequently, by
performing the Fourier transform of a small region of a typical interferogram,
the spectrum will be concentrated in a small spot oriented at the same angle as
the local gradient of that specific region.!” Thus, the fringe orientation is
parallel to the interferogram gradient and is the local spatial-frequency vector
orientation in the Fourier domain.'®!'” This section introduces some of
the fringe-orientation computation techniques. A summary of the different
methods is presented along with their corresponding MATLAB codes.
At the end of the section, a comparison table outlines the advantages and

