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1.3.2 Exact analytical and numerical methods

The general statement of the single-particle scattering problem is rather simple
and can be described as follows. A field E is incident on a scattering particle
of volume ¥V and excites the field E; inside V. Outside V, an additional field,
the diffraction field E;, is generated. It is required to calculate, on the basis of
Maxwell’s equations, the complete field E, which equals E; inside V, and E, +
E; outside V, and that satisfies the boundary conditions at the particle surface
as well as the radiation conditions at infinity. The general scheme being
simple, a concrete solution to the problem depends essentially on the geometry
of the scatterer and on the properties and structure of its substance. For
example, the solution cannot be obtained in a general closed form even for a
spherical particle with an anisotropic refractive index of a general type.'?
Therefore, in the theory of scattering by small particles various methods have
been developed whose scope and effectiveness depend on the particular
statement of a problem. From a current standpoint, an effective numerical
algorithm realized on a personal computer is equivalent to an analytical
solution, which as a rule also calls for nontrivial calculations. In this section,
we will look briefly only at those methods that are most intensively used in
biological applications. A more detailed discussion of the calculation methods
can be found in a recent review.'®

1.3.2.1 Separation of variables and T-matrix methods (SVM and TM)

The most important analytical solution is the theory of scattering by a
homogeneous isotropic sphere, called the Mie theory"!? (the pioneering work
on this problem is associated with a constellation of names***). To illustrate
the basic results of the Mie theory, we give formulas for the extinction cross
section, the scattering cross section, and the anisotropy parameter, following
the designations'?

o, :i—f: > (@n+1)Re(a, + by), (1.15)
n=1
o, = k_fz(zw 1)(|a,]? + [b,]?), (1.16)

n=1
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(1.17)

where the coefficients a,, and b, are called Mie coefficients.'> The Mie theory
is generalized for the case of concentrated spheres, particles with an
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inhomogeneous profile of refractive index or with the optical activity of the
substance, and also for the case of illumination by a focused laser beam. The
relevant literature citations and effective computer codes can be found in
Refs. 16 and 23.

For an infinite circular cylinder an exact solution at perpendicular
incidence was first obtained by Rayleigh,*> who addressed this problem once
again in his last work written shortly before his death.*® Though an infinite
cylinder is not a three-dimensional (3-D) scatterer, this model is helpful in
understanding light scattering and extinction by an anisotropic dispersion
medium (see Section 1.7 below). References to literature that generalizes a
simplest model can be found in Ref. 16. The Mie solution is also generalized
to an arbitrary collection of spheres, but this subject concerns the problem of
scattering by particle aggregates and will be treated separately in Section 1.4.

In Helmholtz’s scalar equation, the variables are separated into 11
physically interesting coordinate systems.*” But for a vector field containing
three scalar functions, a complete separation of variables is possible only in six
systems: (1) Cartesian, (2-4) three cylindrical, (5) conical, and (6) spherical.
Therefore, Moglich’s*® formal solution for spheroidal coordinates was useless
for all practical purposes until the method for separation of variables was
adapted by Asano and Yamamoto®® for numerical calculations via cutoff of
infinite coupled (i.e., not fully separated) equations. Farafonov>® improved
the method described in Ref. 49 by using an ingenuous scheme of splitting
fields into two types with an invariant angular part. By now, a large body of
factual material has been assembled on the application of SVM in the
calculation of scattering by spheroidal particles.'>!

The T-matrix method, which is well known in quantum theory,'® was
introduced into electromagnetic scattering by Waterman.'* Contrary to the
Green function method, the T-matrix relates not the fields themselves in a
coordinate representation, but the expansion coefficients of the incident and

scattered fields over some complete set of vector basis functions. For example,

if one expands all fields in vector spherical harmonics (VSH) Y,(Z,),pl3’47’52

Yoo, = N (kn),Y(), = M (kr), (1.18)

mn mn2

of the first and third kind (r=1,3), then the expansion coefficients for
scattered (a,,,,) and incident (exciting, p,..,) fields are related by

0 v 2
Ay = Z Z Z Tmnp,p,vqp;wq' (119)

v=1 p=—v g=1

After being published in Ref. 53, the T-matrix method began to be used
commonly in the scattering theory.”*>® An important strong point of the
method is the possibility that the problem on the orientational averaging of
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the observed scattering characteristics may be solved analytically.”’® To
illustrate, the extinction and scattering cross sections averaged over random
particle orientations are expressed directly in terms of a T-matrix

2

(Ce) = =7 RelSp(T)]. (1.20)
2

(€)= DTl (1.21)

where the symbol Sp in Eq. (1.20) stands for a spur over all T-matrix
indices, and the symbol a or b in Eq. (1.21) signifies a combined multi-
index (nmp).

1.3.2.2 Integral equation method

The integral equation method (IEM) occupies a special place in the range of
theoretical methods, since it is a general approach in which, by using the
affinor Green function'

exp|ik(r — 1')]

Gry) = (1 + k2VV) e

, (1.22)
a boundary problem is reduced to an integral equation that includes the
boundary condition and radiation condition at infinity'*->*-*

E(r) = Ey(r) + k? _[G(r,r’)[s(r/) —1|E®W)d%. (1.23)

Therefore, the IEM is not merely a numerical approach, but also an efficient
basis for the formulation of other methods [e.g., the method of moments,®' the
T-matrix method,>*>* or the Rayleigh-Debye—Gans (RDG) method®!3->:¢3.
In Eq. (1.23), the scattered field is expressed by way of an unknown
distribution of bulk sources induced by an external field. In the electromag-
netic theory, another approach is also used,’”*? in which the scattered field is
calculated by way of a surface source distribution.

The presence of singularity in Green’s function (1.22) gives rise to a “self-
term” that accounts for the difference between the average Maxwell field and
the local (effective) Lorenz field.”® The various formulations of IEM are in
many ways different only in the methods for allowing for the self-term and in
the methods for replacing the integral equation by its discrete counter-
part.®*%7 The singular equation (1.23) can be represented, by the Fourier
transform, as a nonsingular Fredholm integral equation (FIE) of the second
kind,®®*” which is solved numerically after the discrete-analogue substitution.
It is interesting that the FIE kernel coincides with the second Born
approximation for the integral equation obtained in Ref. 63. References to
papers on the application of various IEM versions in problems of single-
particle scattering are available for review.'®
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1.3.2.3 Discrete dipole approximation

In the theory of scattering by small particles, this method began to be
employed intensively after the publication of a paper by Pursell and
Pennypacker,’® though undoubtedly its physical basis was known and applied
elsewhere previously.>® Yurkin et al. (see, e.g., Ref. 71, and references therein)
developed an alternative discrete dipole approximation code (ADA version)
with enhanced efficiency. A detailed consideration of discrete dipole
approximation (DDA) or ADDA capabilities and limitations can be found
in Ref. 71. The basic physical approximation is in substitution of the actual
scatterer for an ensemble of discrete elements with volume V;, polarizability
a;, and dipole moments d;=d(r;), i=1 — N. All the other calculations, e.g.,
those of the dipole amplitudes, the scattered field, the integral cross sections,
and the scattering matrix may be done absolutely rigorously. The equations
for dipole moments are not hard to write from simple considerations based on
the concept of an exciting field equal to the sum of the incident wave and the
fields of other dipoles at a given point

di(r;) = o [EO )+ k3D Gdi(x } (1.24)

J#

The tensor of dipolar scattering G;; is determined by the known formulas®®

G, = exp(ikr!j)[Gl (kry) + Gy(kry)Ry; - Ry, (1.25)

G,(z) = (=)' [z ' —2n—1)(iz2 = z3)], n=12, (1.26)

wherer;=r; — r;, R;j=r;/r;, and a-b is a dyadic. The solution of the system of
linear equations (1. 24) allows the calculation of all basic optical characteristics
of an aggregate: the vector scattering-amplitude, S(ko, k)

S(ko.k,) = k3 Z [d; — s(sd;)] exp(—ik,r;), (1.27)

and the integral cross sections of extinction C,, absorption C,, and scattering
C=C, — C,

C, = 41-rkImZ(e0d,-) exp(—ikr;), (1.28)
4lm(e;)
C, = 4mkS mld;2, m = 1.29

The important question about the choice of model polarization is left beyond
the limits of the phenomenological scheme just described. It is well known'
that the simplest choice based on the Mossotti—Clausius formula does not satisfy
the optical theorem. Therefore, various approximations have been proposed in
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the literature®*’*7>7> that allow for the dipole-energy radiation losses and lead

to complex polarizability even for the nonabsorbing dipole particle.

At first glance, it seems that the bulk IEM and DDA methods are based on
different physical principles. Therefore, it is important to emphasize that the
solution of Eq. (1.23) by the method of moments and the DDA solution actually
lead to identical systems of linear equations for dipoles if equivalent assumptions
have been made for polarizability in the DDA and for the self-term in the TEM.

If a basis lattice has been specified and the algorithm of finding polari-
zability found, it remains only to fill the lattice nodes by the corresponding
dipoles with regard to the inhomogeneity and shape of the scatterer. Essen-
tially no limitations are placed on the geometry and, to a degree, on the
properties of the material. This is the chief value of the method, particularly as
applied to structurally complex biological objects.”® The limitations of DDA
are associated with the provision of convergence and accuracy of the results,
which are impaired for optically rigid structures.

1.3.3 Approximate theories

With advances in computer facilities and new algorithms many approximate
methods of the scattering theory lost their initial value. Despite this, they often
give useful information for the qualitative understanding of the physics of
phenomena and quantitative tendencies. In this section, we look briefly at
only the basic physical principles of certain approximations. A closer look at
the approximate theories and abundant references are available in Refs. 16,
77, and 78.

1.3.3.1 Rayleigh approximation

The basic ideas of all approximate methods are associated with definite
regions of values of the most important diffraction parameters: the size
parameter ka and the relative refractive index m = n/ng. For example, if
ka<1 and kalm| <1, we are dealing with Rayleigh scattering, in which a
particle scatters like an infinitesimal dipole d = «ey
exp(ikr)

kr
The dipole moment and the corresponding polarizability tensor are estimated
from electrostatic equations.''> The possibility of using an electrostatic
approximation to calculate the dipole moment allows particles of virtually all
shapes to be considered in the Rayleigh scattering theory.”” The accuracy
of the Rayleigh approximation has received in-depth treatment in Refs. 80
and 81.

Stevenson generalized the Rayleigh theory by expanding the fields in
powers of ka. This approximation was used to calculate the Mueller matrix of
light scattering by random spheroids.®® This chapter refers to other
applications of the Stevenson approximation, as does Ref. 16.

Ez = °[d; — s(sd;)] (1.30)

82,83
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1.3.3.2 Rayleigh—Debye—Gans approximation

In a large number of practically important cases, the relative refractive index
of particles m is close to 1. In particular, for the overwhelming majority of
biological structures, m~ 1.”® This condition is valid in an even greater
number of cases for x-radiation or neutron scattering. Such particles are called
“optically soft,” and the corresponding approximation can be called an
“approximation of optically soft particles.”

The condition [m — 1| <1 itself is not sufficient for the development of
the theory, since the ratio between size and light wavelength and the
phase-shift magnitude p = 2ka(m — 1) are of major importance. The
RDG approximation is applicable when two conditions are simultaneously
fulfilled

m—-1l<1, |p|<l1. (1.31)

There are a number of names for the theory that is based on the assumptions in
Eq. (1.31). The best-known name is the Rayleigh-Gans (RG) approximation.'
We believe that the term RDG is best suited for the following reasons. The
fundamental ideas of the method (including the derivation of successive
approximations based on the integral relation for a scattered field) were
formulated by Rayleigh in his 1881 paper,* and the formula for the sphere-
scattering cross section was obtained by him in 1914.3° In 1915, Debye®®
derived a general formula for the intensity of x-rays scattered by a randomly
oriented particle ensemble. Later, Debye applied this approach to light
scattering by polymer solutions,®” which had a profound impact on the
development of this trend.” In quantum mechanics, an analogue to Rayleigh
iterations was developed by Born;*® his name is rightly associated with this
approximation. Thus, retaining the name of Gans in the name of the theory
(RDG) makes sense only because the name RG approximation has received
wide acceptance thanks to van de Hulst."

The RDG approximation can be obtained by various means. For
example, one may use general integral relation (1.23), assuming that the field
inside the particle is the incident-wave field.'*> Another mean is based on the
physical interpretation of scattering as a result of interference from the
independent-dipole fields excited by an incident wave in particle volume V.’
In either case, the scattered field is represented as

E, = ESRG(q): (132)

where E, is the Rayleigh scattered field (1.30), q = k, — kg is the scattering
vector, and G(q) is the interference function or the scattering form-factor

G(q) = Il/ J-exp(—iqr)d3r. (1.33)





