Preface

The overriding objective of this book is to offer a review of vector calculus
needed for the physical sciences and engineering. This review includes necessary
excursions into tensor analysis intended as the reader’s first exposure to tensors,
making aspects of them understandable at the undergraduate level. A secondary
objective of this book is to prepare the reader for more advanced studies in these
areas.

As the world embarks on new horizons in photonics and materials science,
honing one’s skills in vector calculus and learning the essential role that tensors
play are paramount. New inroads in engineering are driving the need for a
revamp of engineering mathematics in these areas. Profound new paradigms in
optical engineering and new advances in composites are necessitating these
changes. The author has found that there is an cver-incrcasing need for vector
calculus concepts to be extended to tensors and that his undergraduates can
indeed grasp tensorial concepts if taught following the lines of thinking presented
here.

Whereas the classical approach to teaching electromagnetics at the junior
level has been to avoid any mention of tensors, the high-tcch world entering the
third millennium warrants a rethinking of this practice. This is especially true as
nonlinear optical effects become more common in the design of optical systems.
Advanced materials, especially composites and nanodesigned materials, provide
further evidence supporting the teaching of tensor fundamentals to upper-
division* students. Even for isotropic materials, the fundamental relationship
between stress, strain, and clastic modulus—which arc rank-two and rank-four
tensors—requires a fundamental understanding of tensor analysis. For
anisotropic materials such as composites, piezoelectric materials, and
magnetostrictive materials, tensorial relationships are unavoidable even in the
linear regime.

Furthermore, the development of new photonics devices in optoclectronics,
acousto-optics, magneto-optics, and fiber optics is playing an ever-increasing
role in contemporary communications system design."** Pollock states

*  University-level juniors and seniors.
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A surface in 3D space given in generalized orthogonal curvilinear
cootrdinates ¢g,,q,,q, is described as h,q, = f (hdq,,h,dq,). Then the change in f
with respect to d/, = hdg, , for example, is

of _ of _OUng) _hOg, g, (1.3-17)
dt, hdg  hdg Ik dg h dg

where the metric coefficients are in general functions of all three coordinates
h =h(q,,q,.q;) and therefore must be included in the derivative when
applying the product rule.

1.3.4 Partial derivative of a vector function

By the time students in the physical sciences or engineering enter upper-division
courses (junior and senior years of a bachelor’s program), they will have been
exposed to the partial derivative. However, this introduction was invariably done
in Cartesian coordinates with Cartesian-coordinate examples. This was fine when
the partial derivative being explained was taken on a scalar function. However,
problems can arise if the partial derivative is taken of a vector function (or of any
tensor of rank greater than zero) and the physical problem leads naturally into
curvilinear coordinates, such as cylindrical coordinates. We will therefore discuss
partial derivatives of vectors in generalized orthogonal curvilinear coordinates.

Let us examine the partial derivative of a vector field

Z(ql’qz’qs):_ﬁlAl(qqu’qz)+”‘A2A2(91’92’%)+LA‘SA3(‘I1’%’%)' The  partial
derivative of A with respect to one of the coordinates g, is

0A _3GiA) | ALA) O

] ! i {

. 0A . 0A, . A,
=i —+ 2+ i, —
oq, 9, aq,

4, %% 1 4,
dg; dg; g,

(1.3-18)

il i
il -

+ A,

where the first three terms on the right-hand side involve partial derivatives of
the scalar components A /(q,.¢,.49;). A,(q,.9,.9;), and A,(q,,q,,q,) of the
vector field, each in their respective unit-vector direction. These terms are
therefore handled as in Eqgs. (1.3-1), (1.3-3), and (1.3-5). The last three terms
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involve coordinate derivatives of unit vectors and must be considered—a point
entirely missed when the Cartesian system is used.

The vital difference is that spatial derivatives of unit vectors in Cartesian
coordinates are all zero, but that derivatives of unit vectors with respect to
coordinates that are curved in space often are not. One might think that the
derivative of a vector whose length is constant has to be zero. However, this is
not the case.

In general it can be shown'' that

diy; _ 4, oh Gy oh; (1.3-19)
aq, h; dq, h 9q,
and
i 4, oh,
o, _H;on (1.3-20)
dg;, h dq,

where 1=1,2,3; j=2,3,1and k =3,1,2, in that order. Further, if the derivative of
a unit vector is not zero, it will always be at right angles to that unit vector. Thus,

. o,

f-—1=0 (1.3-21)
aq.,.

Example: The movement of a clock hand to illustrate the need for
coordinate derivative of a unit vector.

Think of the hand of a clock. In a cylindrical coordinate system (or just a polar
coordinate system because the problem is just 2D), our coordinates g, and g, are
rand ¢, and the metric coefficients h and A, are landr, respectively.
Representing the clock hand as i, , the @ — coordinate partial derivative of 4, can
be found from (1.3-20):

oi 4,9, @, or

8q¢,_h

dr 1 or
(1.3-22)
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Therefore, the rate of change of the clock hand, represented by the unit
vector in the r-direction with respect to the azimuthal ¢ direction is equal to the
unit vector in the ¢ direction. Further, by applying this result to (1.3-21), we see
that

c=i) iy =0 (1.3-23)

Thus, the derivative of the unit vector that is always pointing in the direction of
the clock hand, i.e. @, , with respect to ¢ is at right angles to #, and, in fact, is in
the u, direction. This orthogonal result will always be so because the unit vector
being differentiated does not change length.
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J'A F-da (2.4-23)

where the area A is bounded (by a closed line).

When the surface integral is closed to enclose a volume, Eq. (2.4-23) takes
the form

c-f> F-da (2.4-24)

These integrals with dot products in the integrand are frequently used in
disciplines of mathematical physics, such as quantum physics and
electromagnetics. The dot product in the integrand is simply a convenient way to
sum only the component of F at each differential element of surface over which
the integration takes place that lies normal to that surface element.

Examples of Egs. (2.4-23) and (2.4-24) can be found in Sections 5.2.2,
5.3.1,and 5.3.4.

2.4.3(c) Cross product and the Levi-Civita symbol

The “cross” product of vector A with another vector B is spoken as
“A cross B” and written as A x B. The cross product is defined by

AXB =i, |A|B]|sind, (2.4-25)
where 4, is a unit vector normal to the plane containing B and A andisina
direction given in a right-hand sense—namely by aligning the fingers of your
right hand along the direction of A and turning them into the direction of B so

that your thumb points in the direction of #, .The angle 8,, is the angle made
. . Al
in so doing.

() Commutative and distributive laws for cross products
From Eq. (2.4-25), note that AxB=-BxA . Thus, the commutative law does

not hold for the cross product operation. However, the distributive law does hold.
Namely,
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(A+B+--)x(M+N+--)
= AXM A AXN 4 (2.4-26)
+BxM+BxN+--
+

(i) Vector cross products and the Levi-Civita symbol

Unit vectors in each of three orthogonal directions 4, d,, it, have well-
determined cross-product relationships. These relationships are described
conventionally in the following paragraph and described with the elegance of the
Levi-Civita symbol in the subsequent paragraph.

The cross product of unit vectors in 3D space becomes trivalued, namely,
—1, 0, and +1. The usual process used in sophomore-level texts to explain this
trivalued system is to first point out that i Xi, =0 because &, =0 and the
sing, =0 in Eq. (2.4-25). Further, &, X &, ., =+ 4, , wherei=1,2,3;i+1=
2,3, landi+2=3,1, 2, because 8, ,,=7/2 and sin &, ., =1. The right-
hand rule specifies that direction 1 crossed into direction 2 yields positive
direction 3, or direction 2 crossed into direction 3 yields positive direction 1, and
direction 3 crossed into direction 1 yields positive direction 2. However,
X i, =—i,,,wherei=1,2,3;i+2=3,1,2;and i+ 1=2,3, 1. The minus
sign is needed because when direction 1 is crossed into direction 3 the thumb
points opposite to (or the negative of) direction 2. Likewise, 2 into 1 yields the
negative of direction 3 and 3 into 2 yields the negative of direction 1. The angle
from 1 to 3 may be taken as —/2 since the angle from 3 to 1 is 7/2. Thus,
4 =-7/2 and sing,, —1.

(i + 2) i+ T

However, the Levi-Civita symbol € shortcuts the discussion in the
preceding paragraph. If one calls the sequence 1,2,3,1,2 cyclic, the sequence
3,2,1,3,2 acyclic, and cases where any two adjacent indices are the same
noncyclic, we define the Levi-Civita symbol as'*

1 cyclic
€= 0 noncyclic (2.4-27)
-1 acyclic
and therefore,
U, Xu; =€, (2.4-28)
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which is a tensor notation formulation with the unit vector hats implied.

The cross product of our vector A with B in tensor notation can then be
defined as
AuxBu, = AB €, u, (2.4-29)

(iii) Area formulas using cross products
In Section 1.2 differential area was defined and discussed without the benefit of

the cross product. A description of the vector differential area [Eq. (1.2-5)] can
now be expressed as

— == dixdl ==
da=i|dt||at;|= dbixdt; dt|dt; (2.4-30)
¢ ‘dé',- xdf,\
or more simply in tensor notation as
da=dl,uxdl u,=dl, dl e, u, (2.4-31)

Note also that the area of the parallelogram with adjacent sides A and B is
the magnitude of the cross product where

Area=|A||B|sin8,, =| AxB| (2.4-32)

This is illustrated in Fig. 2.4-2.
Other applications of the cross product include finding the moment of a
force acting at a distance, finding the force on a current-carrying conductor in a

magnetic field, and dealing with the mechanics of gyroscopes, among many
others.

Area

> |

Figure 2.4-2 The area of a parallelogram as ’ZX E‘ .
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(iv) Cross product coordinate expansion

Using the same vectors X:L?,.A‘. and E:ﬁiB/. as before, but using tensor
notation, the cross product takes the form

0 U, -1,
AxB =m AB, A.Bz (@, % 0)AB,
>t 0 L
+ A,B, +;d/ml’2 AB, +A2B3

0

(2.4-33)

W

From Eq. (2.4-28), the cross product factors become 0, i, ,or —i,, where
k =1, 2, 3, as shown in Eq. (2.4-33).

Collecting terms in each of the three coordinate directions,

AxB= i,(AB,—AB,)
+i,(AB, ~ AB,) (2.4-34)
+ ﬁz (Ale B AZBI)

Notice that this can also be represented in determinate form as

~

L P
AxB=|A A, A, (2.4-35)
BI BZ B3

Alternatively, tensor notation can be used in conjunction with the
Levi-Civita symbol to express A X B as

(d4,4)%(@,B,)=ii, €, AB, (2.4-36)

in its ultimate beauty and simplicity, but still preserving all of the operations of
Eq. (2.4-33) resulting in the six nonzero terms of (2.4-34), including the three
minus signs.
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BT()ALV[J' ;‘mnf—i__[ back :| = ]’lll’ih«‘ a(hsl;:AJ (44-2 1)

for one of the three scalar terms making up the divergence of the vector field A .

The same process may be repeated for the other two pairs of integrals;
however, this tedious procedure is not necessary because we may simply roll the
subscripts* to obtain the remaining two terms of the divergence. The roll
sequence is 1 —» 2 — 3 — 1 — 2. Therefore, the divergence of our vector field
A is

e

V-

_ 1 [awzthl)+a<h3laAz>+a<fah2A3>}
hhshy | dg, 94, dq,
1 &9 (hh

- hlhzhz i=l aqz’ i

(4.4-22)

This equation is specialized for Cartesian coordinates in Appendix B, Eq. (B.1-3)
and for cylindrical coordinates in Eq. (B.3-9).

4.5 The Curl Differential Operator

The curl operator is the third of the three first-order vector differential operators
introduced in Section 4.1. Whereas the gradient employed the del operator (V)
directly and the divergence employed the del-dot operator (V -), the curl employs
the del-cross operator, denoted by *V x . In the previous section, we found that
divergence of a vector could not in general be found by simply taking the dot
product of the del operator with the vector because it was necessary to account
for variations in surface elements as well as the vector components. Here we will
find a similar admonition. The curl of a vector field is not simply the cross
product of the del operator with the vector for a similar reason. Although one can
validly get by with this misleading approach when expanding the curl in

*  One of the paramount advantages of using generalized coordinates (GOCCs)
is the ability to roll subscripts. When expanding vector operators into GOCCs
in 3D space, it is necessary (0 do so for one third of the problem. The
remaining two-thirds may be deduced by simply rolling the subscripts. This
procedure is invalid in all specific (nongeneralized) coordinate systems except
Cartesian coordinates. In Cartesian coordinates, it is permissible because all
three metric coefficients, 4,k ,h_, are unity and thus do not have variations
with respect to coordinate directions. In this special case, the roll sequence is
X2 y—=z2x—y.
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Cartesian coordinates, it is invalid to do so in any other coordinate system. Many
texts that first introduce the student to vector differential operators immediately
fall into this oversimplistic approach of expanding these operators in rectangular
coordinates, no doubt because to immediately expand into GOCCs exposes the
student to an inordinate complexity of calculative rules before providing a
perception of the nature of the operator. In the case of the curl, Beve states this
with his usual insight and precision:'”

To be sure, such rules are useful in actual calculations but they
hardly provide any physical insight into the nature of the curl and
maoreover depend on coordinate systems.

In this section we find that the curl does not change the rank of the field
upon which it operates. This is in contrast to the previous two operators in that
the result of a gradient operation added one to the rank and the divergence
subtracted one from the rank of field that was operated upon. Therefore, if the
three operators act on a vector field, the divergence will yield a scalar, the curl
will yield a vector, and the gradient will yield a dyadic.

Like the gradient and the divergence, the curl is a first-order vector
operator using the del notation; however, the similarities end there, The curl
operator is entirely different from the two just previously reviewed. The inherent
definitions are based on three entirely different geometries—the gradient on a
differential length going to zero in the limit, the curl on a differential area going
to zero in the limit (as we will soon see), and the divergence on a differential
volume going to zero in the limit. In addition, the curl operates transversely,
whereas the divergence operates tangentially and the gradient operates omni-
versely, so-to-speak. By this, we do not mean that the resultant is transverse,
tangential, etc.—just the operand acts in these ways.

4.5.1 The curl of a vector field—a physical description

Let us next acquire a physical understanding of this vector field that we call the
curl of a vector field from the definition (outside of the context of coordinates).
Again, the definition of this vector operation is given by Bevc'” (with emphasis
added):

The curl of a vector field A at a point is a vector pointing in the
direction of a normal to arn infinitesimal surface which is so oriented
in space that the limit of the ratio of the line integral of the vector
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field A around the perimeter of that surface to the area enclosed is
maximal. The magnitude of the curl is the value of that limit,

Mathematically, the curl vector C of the vector field A is by this definition
determined by

N 7.t
C=curl A=lim <+ — . (4.5-1)
Aa—0 Aa
where
/l\}IEI}()(C]rC(A)/Aa) max

is the maximum of the ratio of the circulation of A(r.t), defined by Eq.
(2.4-22), about the point P located at ¥ in space and at time ¢ to the enclosed
area, and where i, is the normal to that surface at P in the right-hand sense with
respect to the direction of the closed-line integration. Shorthand notation for the
curl is given by the use of the del-cross operator as

C=VxA (4.5-2)

Since there are a triply infinite number of closed paths about a point—an
infinite number of paths about each of the three orthogonal axes passing through
the point P —it may seem that finding the maximal ratio would be a formidable
task. However, a perfectly straightforward procedure is taken to resolve this
difficulty.

First, a component of the curl in an arbitrary direction, say i,, is found
from the above definition. That is, an arbitrarily selected infinitesimal surface,
Aa, , is chosen with 4, as its normal. This surface is planar and is bounded by an
infinitesimal closed path d_K, whose direction is taken in the right-hand sense
(that is, with the thumb of the right hand in the direction of #,, the fingers give
the direction of the closed path). It is chosen such that the plane of the path
contains the point P at which the curl of A is desired. In performing the limit,
namely Lilin'o(circ(g)/Aa), the vector component of the curl of A in the ﬁ]
direction is determined:
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infinitesimal surface

d? is a differential element of length
on a closed path surrounding the surface

i is L tosurface

Figure 4.5-1 The geometry associated with the definition of curl.

3 A-dl
curl A| =i, lim =24 (4.5-3)
1 Aa—0 Aa]

A second direction, say &, , is taken orthogonal to the first but otherwise
arbitrary, and the procedure is repeated to obtain the second component. Finally,
a third component is taken orthogonal to the first two by the right-hand rule (and,
thus, is uniquely determined). We assign its direction as #,, and repeat the
procedure again. Summing the three orthogonal components, the resulting vector
is the desired maximal ratio and is the curl of A:

3
VxA= Zcurl A|,-
i=]
. A'ﬁ (4.5-4)

A . Ag;
=4, lim —=—
Aa

o A0 A,

Note that this expression was determined from the definition without the
need for any coordinate system.

4.5.2 The curl as a vorticity vector
In order to give further physical interpretation of the curl operator we need to
garner a physical understanding of the circulation integral, Eq. (4.5-1) —an

intimate part of the definition of the curl. As first presented in Eq. (2.4-22), the
circulation of the vector field A is

circ(A) =<_f>71 -de (4.5-5)
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From [Morse & Feshbach, pp 18ff]'° this integral is a measure of the tendency of
the field’s flow lines to “curl up.” In cases such as magnetic fields or fluid flow
fields where the field direction lines either close on themselves or circulate as in
a helix, the circulation of the field, circ(Z), will not be zero. As defined in the
discussion following Eq. (2.4-22), such fields are referred to as rotational,
solenoidal, or nonconservative. Other terms expressing this circulatory nature of
some fields are paddle-wheeling®® (Thomas & Finney, p. 992 and Schwarz, p.
154ff), swirl” (O’Neil, p. 972), and vorticity'® (Rogers, p. 275). Each of these
terms conjures up the image of circulating or twirling fields.

The paddle-wheel concept is perhaps the easiest to understand for the
student’s initial exposure to curl. Suppose that a small paddle wheel consisting of
symmetrical, uniform, planar fins on an axial shaft is placed in a fluid that is
flowing. If the flow lines are uniform, that is, having constant direction and
strength, the paddle wheel will not rotate no matter what the direction of its axis
is. However, if there is a variation in the flow field, either in magnitude or
direction or both, there will be orientations of the axis in which the paddle wheel
will rotate. The rotational speed of the paddle wheel is a measure of the
magnitude of the vector component of the curl. The axis is the direction of the
component, where the thumb of the right hand gives the orientation of the
direction when the fingers are orientated in the direction of rotation. As the axis
1s adjusted for maximum rotation, the ultimate curl vector is empirically
determined. This postulation may be tested by rotating the axis in each of two
orthogonal directions and noting that the paddle wheel does not turn in either of
these orientations. Thus, the component of the curl that exhibits maximum
circulation where the other two orthogonal components are zero is the curl.

Such a gedanken experiment (German for “thought experiment”) may be
tested by the construction of a cur! meter, which consists of a small paddle wheel
metered to display its angular velocity. As with most such instruments, the
presence of the probe may affect the field that it measures; however, the
instrument can often be oriented to minimize such errors.

The curl operator is a measure of the circulation density or vorticity of a
vector field'"—that is, the circulation per unit cross-sectional area—which is
precisely given in the definition of the curl, Eq. (4.5-1). As Morse & Feshbach
point out, the limiting process of Eq. (4.5-1) “is more complicated than that used
to define the divergence, for the results obtained depend on the orientation of the
element of area,” another way of pointing out the ultimate task of determining the
maximal ratio specified by the definition. In their ensuing discussion Morse &
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4.5.4 The expansion of the curl in cylindrical coordinates

Substituting 7,¢. z for q,.4,.q, and 1,r,1 for i, h,, h, in Eq. (4.5-12a) we have

104, OA 0A  0A 1] 0(rA;) 9A
VXAl =4, ——2——2 |+i, | —L——% [+ — ¢ |(4.5-13a
ol {r ¢ 82} ‘{az ar} I{ or ¢ ( )
or alternatively in determinant form, we have
u, . i,
F ¢ r
VxA |9 9 9 (4.5-13b)
ol lor d¢ oz
A rA?0 A,

4.6 Tensorial Resultants of First-Order Vector Differential
Operators

To summarize, let us tabulate the resultant quantities from the three first-order
vector differential operators developed in the preceding three sections. We will
first establish single-character symbols—D, € and G—to denote divergence, curl
and gradient, respectively. This ordering is chosen in increasing order of resultant
tensor rank. That is, the divergence, curl, and gradient change the rank of the
operand—the quantity upon which they operate—by —1, 0, +1, respectively. As
stated in Section 4.1, a vector differential operator can yield scalar, vector, or
tensor fields depending on its properties and depending upon the rank of the
operand. Table 4-1 summarizes, encapsulates, and generalizes this statement for
the divergence, curl, and gradient of scalars, vectors, dyadics and tensors in
general.

Since there can be no quantity with negative rank, the divergence cannot
operate on a scalar. Also, by careful inspection of Eq. (4.5-12a), the curl cannot
operate on a scalar either. These observations are consistent with the rules for the
dot and cross products between vectors. One cannot take a dot or cross product of
a vector with a scalar. For the same reason, one cannot take the divergence or
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Table 4-1 Resultant tensor rank from three first-order vector differential

operators.
Diff. with a with a with a with a tensor
Vector | scalar(n, =0) | vector(n, =1) dyadic of rank 7,
Operator operand § operand v (n, =2) operand
operand d T
D X s (n,=0) v(n,=1) wet
C X v(n,=1) d(n,=2) we T
G v(n,=1) d(n,=2) t(n,=3) npt]
Key: X = nonexistent d= diadic (n, =2) D=divergence
$= scalar (n, =0) t = triadic (n, =3) C=curl
V= vector (n, = 1) nRT = tensor of rank n, G=gradient

curl® of a scalar. Therefore, these two operations are noted as “nonexistent” in
Table 4-1.

Note that resultant quantities align diagonally in Table 4-1. For example, the
operations Gs, Cv, and Dd result in vectors, which line up diagonally. Likewise,
Gv, Cd, and Dt (the latter, D operating on a triadic, tensor of rank n, =3) also
line up diagonally, each having dyadic resultants.

4.7 Second-Order Vector Differential Operators—Differential
Operators of Differential Operators

Thus far we have been dealing with the three classical first-order vector
differential operators—divergence, curl, and gradient. In this section, we will
cover some of the combinations of these. There are logically nine combinations
of these three operators, although some may be nonexistent and some may be
zero depending upon the quantity being operated on, which we call the operand.
Again, in order to list and sort these nine combinations, let us use the same
single-character symbols, namely D, C, and G, that we use in building the above
table, to denote divergence, curl, and gradient, respectively. This ordering is

* Although the curl of a scalar is considered nonexistent, if such an operation did exist in
some sense—a purce abstraction—it would be a scalar, since the curl does not change the
rank of the quantity upon which it operates.
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Table B-1 The Common Four Orthogonal Coordinate Systems

Coordinate G lized Circul
Svst eneralize i ircular : .
ystems= Curvilinear Cartesian Cylindrical Spherical
& Paramelers)
Coordinates q, —co L X < o0 O=r(or 7;)<eo 0<r(or r)<eo
<p<
and their q, —co < y < oo Osgs2m 0<é6=zrx
range of valucs g, —oo L 7 < oo RIS 0<9p<2x
Transformation x=gq, x=rcos¢ | x=rsin @ cos ¢
o y=q, y=rsing | y=rsin 8sin ¢
Cartesian o= o — rcos @
coordinates T LTL °= '
Orthogonal Unit | » -~ =« P P S P P
Vectors i, i, U, i, USRIV i, ity .,
Differentials of dr.d@,dz or dr.d6,dgor
dqg .dqg,.d ydz
Coordinates 41:49:,49; dx,dy,dz dr.,d¢.dz dr,,d6,do
Componenls_of A A A A A A A A A A A A
the vector A DA R A mrert ety
Metric, Lamé | Al 41,49, ) 1 1 1
Cocfficients, or | Ay ¢,,¢,.4; ) 1 - r
scale factors | h( g,.9,,q;) 1 1 rsin@
Differential | dl, = hdg, dx dr dr
Elements of | dl, = h,dg, dy rdo rdo
Length dl, = hdg, dz dz rsin8d¢
2 2 2 2 2 _
ey ,/x“.+y =r XY =R
cylinders; spheres;
y=y Sy _ iz
Description of 7=z tan " -=¢ C?S. o '9‘
Coordinate three halfplanes Z-ax1s ?ones
Surfaces h | from the tan™' % =¢
orthogona Z axis; halfplanes
planes z =1z, planes from the
1 z axis. Z axis.
Coordinate
Surface Fig. B4 Fig. B-5 Fig. B-6
Graphics




B.5: Orthogonal Coordinate System Parameters and Surface Graphics B-17

Figure B-4
Cantesian coordinate surfaces

Figure B-5
Cylindrical coordinate surfaces

Figure B-6
Spherical coordinate surfaces



B-20 Appendix B: Vector Calculus in Orthogonal Coordinate Systems
Table B-3 Spheroidal Coordinate Systems
Coordinate . X
Systems— Confocal prolate Confocal oblate
& Parameters) spheroidal spheroidal
Coordinates g1 g=1
and their 0<n<r 0<n<x
range of values 0<g<2r 0<p<2r

Transformation

x=c,sinh & sing cos g

x=c, cosh& cosn cosg

the vector A

to v=c,sinh{ sin7y sing y=c,cosh& cosn sing
Cartesian ) ‘
coordinates z=c,cosh& cosn z=c,sinh ¢ sinz
Orthogonal A oA P
. iy, it i U, i, i
Unit Vectors srUnr e LA
Differentials of dE-dn.d
: ,dn, dé,dn.d
Coordinates 5 m.d¢ 5 mde
Components of
= A AA, A: A A,

Metric
Coefficients,
Lamé
Coefficients, or
scale factors

c/)\/sinhzf— sin’n
¢,/sinh*& —sin’y

c,sinh& sin7y

c,~[sinh*& —sin’7y
c,fsinh’& —sin’zy

c,coshé cosn

DifTerential

: 2 2 -
c[}\/smh E—sin'ny d&

c,[sinh’& —sin’n d&

.2 2 1
sin‘p cos’ny !

E]ir;]r?::ﬁ Of c.“ v Sinh2§ - Sinzﬂ d’? Cu \Y Sil’]hzg - Sinzn d’]
o . .

¢, sinhg sin7 dy c,coshé cosndg
xz + y’l Z2 , xZ + yZ ZZ )
.. T 1z % oz T 7z %

sinh’¢  cosh’& sinh®  cosh™&

prolate ellipsoids; oblate ellipsoids;
o S+y 7 2 ryow 2
Description of —— =—c -———=—,

2 2
sin“7;7 cosn

Graphics

Coordinate . .
Surfaces 2-sheet hyperboloids; 1-sheet hyperboloids;
tan"%: tan 'L =9
halfplanes halfplanes
from the from the
Z axis. 7 axis.
Coordinate
Surface Fig. B-10 Fig. B-11
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(b) Two-sheet hyperboloids {b) One-sheet hyperboloids

Figure B-10 Figure B-11
Prolate spheroidal surfaces Oblate spheroidal surfaces





