Paper
15 March 2019 Nuclei counting in microscopy images with three dimensional generative adversarial networks
Author Affiliations +
Abstract
Microscopy image analysis can provide substantial information for clinical study and understanding of biological structures. Two-photon microscopy is a type of fluorescence microscopy that can image deep into tissue with near-infrared excitation light. We are interested in methods that can detect and characterize nuclei in 3D fluorescence microscopy image volumes. In general, several challenges exist for counting nuclei in 3D image volumes. These include “crowding” and touching of nuclei, overlapping of nuclei, and shape and size variances of the nuclei. In this paper, a 3D nuclei counter using two different generative adversarial networks (GAN) is proposed and evaluated. Synthetic data that resembles real microscopy image is generated with a GAN and used to train another 3D GAN that counts the number of nuclei. Our approach is evaluated with respect to the number of groundtruth nuclei and compared with common ways of counting used in the biological research. Fluorescence microscopy 3D image volumes of rat kidneys are used to test our 3D nuclei counter. The accuracy results of proposed nuclei counter are compared with the ImageJ’s 3D object counter (JACoP) and the 3D watershed. Both the counting accuracy and the object-based evaluation show that the proposed technique is successful for counting nuclei in 3D.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shuo Han, Soonam Lee, Chichen Fu, Paul Salama, Kenneth W. Dunn, and Edward J. Delp "Nuclei counting in microscopy images with three dimensional generative adversarial networks", Proc. SPIE 10949, Medical Imaging 2019: Image Processing, 109492Y (15 March 2019); https://doi.org/10.1117/12.2512591
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Microscopy

3D image processing

Biological research

Convolutional neural networks

Image analysis

Machine learning

Multiphoton fluorescence microscopy

Back to Top