Presentation + Paper
1 August 2021 A method to study cellular injuries using optical trapping combined with laser-induced shockwaves under quantitative phase microscope
Author Affiliations +
Abstract
There is a need for new methodologies to investigate cell apoptosis and recovery, cell adhesion, and cell-cell interactions in cellular biology and neurobiology. Such systems should be able to induce localized cell injuries and measure damage responses from single cells. In this regard, pulsed lasers can be used to produce Laser- Induced Shockwaves (LIS), which can cause cell detachments and induce cellular membrane injuries, by applying shear force in order of µN . Furthermore, since the resulting shear force can increase membrane permeability, chemicals and markers can then be transferred into cells non-invasively. Continuous-wave lasers can be used as Optical Tweezers (OT), to apply non-contact delicate forces, as low as 0.1f N , and deliver materials into cells, and also move the cells to different locations. In this paper, we introduce a combination of modalities to apply variable forces, from femto to micro newtons, to cells. Our system consists of a 1060nm continuous laser light source for OT and a 1030nm femtosecond pulsed laser for generating LIS. To have a direct measurement of changes in the cellular thickness and membrane dynamics, the cells are imaged under a Quantitative Phase Microscope (QPM). Our microscope is capable of Differential-Interference Microscopy (DIC) and Phase-Contrast microscopy (PhC) and fluorescent microscopy, making it a unique system for studying cell injuries.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Pegah Pouladian, Nicolas Perez, Toyohiko Yamauchi, Nicole M. Wakida, Michael W. Berns, and Daryl Preece "A method to study cellular injuries using optical trapping combined with laser-induced shockwaves under quantitative phase microscope", Proc. SPIE 11798, Optical Trapping and Optical Micromanipulation XVIII, 1179808 (1 August 2021); https://doi.org/10.1117/12.2594780
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical tweezers

Lithium

Injuries

Microscopes

Pulsed laser operation

Beam splitters

Digital image correlation

Back to Top