Enhanced Rayleigh backscattering optical fibers, interrogated by an optical frequency domain reflectometer, are used to perform remote real-time measurements of X-ray irradiation profiles, with possible application as dosimeters in radiotherapy treatments. The enhanced Rayleigh backscattering is obtained by proper engineering of the composition of fiber core, either by introduction of Aluminum or Magnesium silicate nanoparticles as radiation-sensitive dopants. A detectable radiation-induced refractive index change can be spatially resolved through the measurement of the frequency shift of the Rayleigh backscattering along the fiber. It is experimentally demonstrated that two mechanisms of radiation-induced refractive index change take place. At doses nearly compatible with those delivered in radiotherapy, a negative refractive index is induced, whereas at high doses the change is positive. This behavior is also confirmed by the shift of Bragg wavelength of a fiber Bragg grating inscribed in the nanoparticles-doped fiber and used as a reference.
|