Paper
1 June 1990 Analysis of a millimeter-wave integrated electro-optic modulator with a periodic electrode
Author Affiliations +
Abstract
A millimeter wave integrated lithium niobate modulator, consisting of a titanium diffused optical waveguide Mach-Zender interferometer and a traveling wave coplanar waveguide electrode with periodic series stubs, is analyzed through the application of Floquet's theorem. First, a design equation for the modulator is derived by expanding the RF signal along the optical waveguide into space harmonics and then matching the velocity of the dominant space harmonic to the velocity of the optical signal. Then, the frequency response of the modulator is found by integrating, over the modulator's length, the local optical phase shifts that are electro-optically induced by all of the RF space harmonics. Finally, it is shown how the concepts developed here for an ideal (no reflections) periodic structure can be applied to the experimental determination of the modulator response by characterizing isolated unit sections of a real electrode. This approach has the added advantage of facilitating RF inmpedance matching to the modulator.
© (1990) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James H. Schaffner "Analysis of a millimeter-wave integrated electro-optic modulator with a periodic electrode", Proc. SPIE 1217, Optoelectronic Signal Processing for Phased-Array Antennas II, (1 June 1990); https://doi.org/10.1117/12.18149
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Modulators

Electrodes

Phased array optics

Waveguides

Extremely high frequency

Integrated optics

Modulation

Back to Top