Poster + Paper
27 August 2022 Simulations of polarimetric observations of debris disks through the Roman Coronagraph Instrument
Author Affiliations +
Conference Poster
Abstract
The Roman coronagraph instrument will demonstrate high-contrast imaging technology, enabling the imaging of faint debris disks, the discovery of inner dust belts, and planets. Polarization studies of debris disks provide additional information on dust grains’ size, distribution, and shape. The Roman coronagraph uses a polarization module comprising two Wollaston prism assemblies to produce four orthogonally polarized images (I0, I90, I45, and I135), each measuring 3.2 arcsecs in diameter and separated by 7.5 arcsecs in the sky. The expected RMS error in the linear polarization fraction measurement is 1.66% per resolution element of 3 by 3 pixels. We present a mathematical model to simulate the polarized intensity images through the Roman CGI, including the instrumental polarization and other uncertainties. We use disk modeling software, MCFOST, to model q, u, and polarization intensity of the debris disk, Epsilon-Eridani. The polarization intensities are convolved with the coronagraph throughput incorporating the PSF morphology. We include model uncertainties, detector noise, speckle noise, and jitter. The final polarization fraction of 0.4±0.0251 is obtained after post-processing and speckle noise removal.
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ramya M. Anche, Ewan S. Douglas, Kian Milani, Jaren Ashcraft, and John Debes "Simulations of polarimetric observations of debris disks through the Roman Coronagraph Instrument", Proc. SPIE 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, 1218056 (27 August 2022); https://doi.org/10.1117/12.2629497
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polarization

Mathematical modeling

Coronagraphy

Point spread functions

Polarimetry

Light scattering

Electron multiplying charge coupled devices

Back to Top