In this paper, we present a novel technique for stabilisation of widely wavelength modulated lasers (>100pm) over long time scales, where modulation depths exceed the spectral width of standard reference features, such as gas absorption lines, by over an order of magnitude. The technique operates by controlling the temporal separation between successive appearances of a gas absorption line on the up and down sweeps of a sinusoidal laser wavelength modulation waveform. The influence of the signal distortions introduced by the laser intensity modulation that are associated with laser diode injection current modulation are also addressed. The technique is applied to a range-resolved interferometric system interrogating a Mach-Zehnder interferometer operating in thermally stable conditions, using an absorption feature from a fibre-coupled gas cell as a reference. Proof-of-principle measurement results achieved using this technique are presented, demonstrating a notional fractional stability of 3.9×10−7 without further correction.
|