Presentation + Paper
11 April 2024 Design of first experiment to achieve fusion target gain > 1
A. L. Kritcher, D. J. Schlossberg, C. R. Weber, C. V. Young, E. Dewald, A. B. Zylstra, O. A. Hurricane, A. Allen, B. Bachmann, K. L. Baker, S. Baxamusa, T. Braun, G. Brunton, D. A. Callahan, D. T. Casey, T. Chapman, C. Choate, D. S. Clark, J.-M. G. Di Nicola, L. Divol, M. J. Edwards, S. Haan, T. Fehrenbach, S. Hayes, D. E. Hinkel, M. Hohenberger, K. Humbird, O. Jones, E. Kur, B. Kustowski, C. Kong, O. L. Landen, D. Larson, X. Lepro-Chavez, J. D. Lindl, B. J. MacGowan, S. Maclaren, M. Marinak, M. Millot, A. Nikroo, R. Nora, A. Pak, P. K. Patel, J. E. Ralph, M. Ratledge, M. S. Rubery, S. M. Sepke, M. Stadermann, D. J. Strozzi, T. I. Suratwala, R. Tommasini, R. Town, B. Woodworth, B. Van Wonterghem, C. Wild
Author Affiliations +
Abstract
An exciting use of high powered lasers is to inertially confine fusion plasmas in the laboratory. This presentation describes the first design to achieve controlled fusion target gain exceeding one using high powered lasers in the inertial confinement fusion approach and recent experimental results on the NIF (National Ignition Facility). In these experiments, laser beams incident on the inside of a cylindrical can (Hohlraum) generates an intense x-ray radiation bath that is used to spherically implode pellets containing Deuterium and Tritium. On Dec 5th 2022, the imploded pellet generated more fusion energy (3.15 MJ) than laser energy incident on the target (2.05 MJ), reaching a milestone for the field that was more than six decades in the making. Follow on experiments in this platform using 2.2 MJ of laser energy have generated >5 MJ and >2x target gain.
Conference Presentation
© (2024) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. L. Kritcher, D. J. Schlossberg, C. R. Weber, C. V. Young, E. Dewald, A. B. Zylstra, O. A. Hurricane, A. Allen, B. Bachmann, K. L. Baker, S. Baxamusa, T. Braun, G. Brunton, D. A. Callahan, D. T. Casey, T. Chapman, C. Choate, D. S. Clark, J.-M. G. Di Nicola, L. Divol, M. J. Edwards, S. Haan, T. Fehrenbach, S. Hayes, D. E. Hinkel, M. Hohenberger, K. Humbird, O. Jones, E. Kur, B. Kustowski, C. Kong, O. L. Landen, D. Larson, X. Lepro-Chavez, J. D. Lindl, B. J. MacGowan, S. Maclaren, M. Marinak, M. Millot, A. Nikroo, R. Nora, A. Pak, P. K. Patel, J. E. Ralph, M. Ratledge, M. S. Rubery, S. M. Sepke, M. Stadermann, D. J. Strozzi, T. I. Suratwala, R. Tommasini, R. Town, B. Woodworth, B. Van Wonterghem, and C. Wild "Design of first experiment to achieve fusion target gain > 1 ", Proc. SPIE 12939, High-Power Laser Ablation VIII, 1293905 (11 April 2024); https://doi.org/10.1117/12.3017211
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fusion energy

Design

Laser energy

Diamond

Laser radiation

Plasmas

Laser ablation

RELATED CONTENT

Fluxes of fast multiply charged ions on laser ablation of...
Proceedings of SPIE (September 13 2002)
Characteristics of laser-induced gas breakdown
Proceedings of SPIE (March 03 2003)
Self-smoothing effect of double-pulse-laser plasma
Proceedings of SPIE (February 13 1996)
Thin film synthesis with ultrafast lasers
Proceedings of SPIE (July 08 1998)
Laser fusion: the first ten years (1962-1972)
Proceedings of SPIE (September 14 1998)

Back to Top