Drones provide a versatile platform for remote sensing and atmospheric studies. However, strict payload mass limits and intense vibrations have proven obstacles to adoption for astronomy. We present a concept for system-level testing of a long-baseline CubeSat space interferometer using drones, taking advantage of their cm-level xyz station-keeping, 6-dof freedom of movement, large operational environment, access to guide stars for end-to-end testing of optical train and control algorithms, and comparable mass and power requirements. We have purchased two different drone platforms (Aurelia X6 Pro, Freefly Alta X) and present characterization studies of vibrations, flight stability, GPS positioning precision, and more. We also describe our progress in sub-system development, including inter-drone laser metrology, realtime gimbal control, and LED beacon tracking. Lastly, we explore whether custom-built drone-borne telescopes could be used for interferometry of bright objects over km-level baselines using vibration-isolation platforms and a small fast delay for fringe-tracking.
|