As wavefront quality demands tighten on space systems for applications such as astronomy and laser communication, mounting small optics such that the wavefront is undisturbed, positioning is adjustable and the design is producible, while surviving harsh space environments, is a continuing challenge. We designed multiple candidate flexure mounts to support small optics (up to 50 mm diameter, and over 100 grams) to survive the qualification and acceptance tests of small spacecraft and units as defined in ISO 19683 and a mounting structure which is adjustable in decenter [+/-0.5mm], tip/tilt +/-0.5deg, and piston [+/-0.25mm]. We will present design details along with measurements showing less than approximately lambda/10 wavefront contribution from the optic bonding process, along with thermal and multi-axis vibration test data showing the mounted optics survived the acceptance testing loads and are suitable for operation in a wide range of harsh environments.
|