This study presents a portable multi-component gas sensing system based on Fiber-Enhanced Raman Spectroscopy (FERS). The system achieves efficient gas collection, precise analysis, and rapid response times by leveraging the unique advantages of hollow-core optical waveguides. The large aperture and high reflectivity of silver-coated capillary (SCC) minimize optical power loss and improve the collection efficiency of Raman signals, ensuring high sensitivity and accuracy in gas detection. And by combining SCC and lens with the gas chamber, the integration of the probe has been improved. Additionally, The system's fiber optic probe structure seamlessly connects the Raman probe to the laser and spectrometer via multimode fiber, streamlining signal transmission, allowing it to function as an independent portable probe. Experimental results demonstrate the system's capability for qualitative and quantitative analysis of multi-component gases, achieving detection limits in the low hundreds of parts per million (ppm) for gases such as CH₄, C₂H₄, and C₂H₂, along with other flammable industrial gases. Notably, the system exhibits a rapid response time of 1.5 seconds. This portable FERS-based gas sensing system offers exceptional performance for real-time gas analysis, making it a valuable tool for industrial and environmental monitoring applications due to its compact design, high sensitivity, versatility, and fast response.
|