Paper
17 May 1996 Variable-focus side-firing endoscopic device
Vladimir G. Lemberg, Michael Black
Author Affiliations +
Abstract
Conventional side-firing fiber technology exhibits performance limitations and utilizes expensive single-use only devices which often require multiple fibers for laser prostatectomy. Another limitation of existing side-firing fiber technology is its inability to focus the beam to create incisions for urologic applications such as laser TURP (transurethral resectional prostatectomy), tumor necrosis, lithotripsy, genital warts, and photodynamic therapy. Newly introduced variable-focus side-firing endoscopic device utilizes either one or two lenses and a mirror, onto a single cylinder of molded glass. The laser beam exits the optical fiber, passes through the lens, strikes the cylindrical mirror, and traverses the cylindrical surface. Depending on the design, the laser beam is reflected at the angles ranging from 30 degrees to 120 degrees out of the cylindrical lens. A second lens can be formed onto the side of the cylindrical surface at the beam's exit point. Another advantage of the innovative side-firing device is its capability to provide versatile matching to multiple laser wavelengths from 360 nm to 2.5 microns, and achieve power densities great enough to perform vaporization, incision and coagulation of tissue. Precise focusing of the laser beam results in reduced tissue necrosis of surrounding the treatment area as well as in decreased laser radiation back-scattering. Surgeons can very the focus by adjusting the distance from the tip to the target area. The variable focus side-firing device provides a focused beam at the range of 1.0 to 1.5 mm, for incision. Outside this range, it produces a defocused beam for coagulation.
© (1996) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vladimir G. Lemberg and Michael Black "Variable-focus side-firing endoscopic device", Proc. SPIE 2671, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, (17 May 1996); https://doi.org/10.1117/12.240036
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Laser therapeutics

Endoscopy

Mirrors

Fiber lasers

Microlens

Laser tissue interaction

Natural surfaces

Back to Top