Paper
25 April 1997 Feature space analysis of MRI
Author Affiliations +
Abstract
This paper presents development and performance evaluation of an MRI feature space method. The method is useful for: identification of tissue types; segmentation of tissues; and quantitative measurements on tissues, to obtain information that can be used in decision making (diagnosis, treatment planning, and evaluation of treatment). The steps of the work accomplished are as follows: (1) Four T2-weighted and two T1-weighted images (before and after injection of Gadolinium) were acquired for ten tumor patients. (2) Images were analyed by two image analysts according to the following algorithm. The intracranial brain tissues were segmented from the scalp and background. The additive noise was suppressed using a multi-dimensional non-linear edge- preserving filter which preserves partial volume information on average. Image nonuniformities were corrected using a modified lowpass filtering approach. The resulting images were used to generate and visualize an optimal feature space. Cluster centers were identified on the feature space. Then images were segmented into normal tissues and different zones of the tumor. (3) Biopsy samples were extracted from each patient and were subsequently analyzed by the pathology laboratory. (4) Image analysis results were compared to each other and to the biopsy results. Pre- and post-surgery feature spaces were also compared. The proposed algorithm made it possible to visualize the MRI feature space and to segment the image. In all cases, the operators were able to find clusters for normal and abnormal tissues. Also, clusters for different zones of the tumor were found. Based on the clusters marked for each zone, the method successfully segmented the image into normal tissues (white matter, gray matter, and CSF) and different zones of the lesion (tumor, cyst, edema, radiation necrosis, necrotic core, and infiltrated tumor). The results agreed with those obtained from the biopsy samples. Comparison of pre- to post-surgery and radiation feature spaces confirmed that the tumor was not present in the second study but radiation necrosis was generated as a result of radiation.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hamid Soltanian-Zadeh, Joe P. Windham, and Donald J. Peck "Feature space analysis of MRI", Proc. SPIE 3034, Medical Imaging 1997: Image Processing, (25 April 1997); https://doi.org/10.1117/12.274127
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissues

Image segmentation

Magnetic resonance imaging

Image analysis

Tumors

Biopsy

Visualization

Back to Top